-
6
-
-
14544275417
-
Prehistory of Faa di Bruno's formula
-
February
-
A. Craik, Prehistory of Faa di Bruno's Formula, American Mathematical Monthly, 112 (2), February 2005, pp. 119-130.
-
(2005)
American Mathematical Monthly
, vol.112
, Issue.2
, pp. 119-130
-
-
Craik, A.1
-
7
-
-
84917725690
-
The derivation of the pattern formulae of two-way partitions from those of simpler patterns
-
R.A. Fisher and J. Wishart, The derivation of the pattern formulae of two-way partitions from those of simpler patterns, Proceedings of the London Mathematical Society, Series 2, 33, 1931, pp. 195-208.
-
(1931)
Proceedings of the London Mathematical Society, Series 2
, vol.33
, pp. 195-208
-
-
Fisher, R.A.1
Wishart, J.2
-
8
-
-
0035995563
-
The curious history of Faà di Bruno's formula
-
W.P. Johnson, The Curious History of Faà di Bruno's Formula, Am. Math. Monthly 109, 2002, pp. 217-227.
-
(2002)
Am. Math. Monthly
, vol.109
, pp. 217-227
-
-
Johnson, W.P.1
-
10
-
-
0141802164
-
Generalization of the formula of faa di bruno for a composite function with a vector argument
-
R. Mishkov, Generalization of the Formula of Faa di Bruno for a Composite Function with a Vector Argument, International Journal of Mathematical Sciences, 24, 2000, pp. 481-491.
-
(2000)
International Journal of Mathematical Sciences
, vol.24
, pp. 481-491
-
-
Mishkov, R.1
-
12
-
-
0000819568
-
The number of partitions of a set
-
G-C. Rota, The Number of Partitions of a Set, Am. Math. Monthly 71, 1964, pp. 498-504.
-
(1964)
Am. Math. Monthly
, vol.71
, pp. 498-504
-
-
Rota, G.-C.1
-
13
-
-
0040635126
-
Geometric probability
-
C-C. Rota, Geometric Probability, Mathematical Intelligencer, 20 (4), 1998, pp. 11-16.
-
(1998)
Mathematical Intelligencer
, vol.20
, Issue.4
, pp. 11-16
-
-
Rota, C.-C.1
-
14
-
-
84985579434
-
Cumulants and partition lattices
-
T.P. Speed, Cumulants and Partition Lattices, Australian Journal of Statistics, 25 (2), 1983, pp. 378-388.
-
(1983)
Australian Journal of Statistics
, vol.25
, Issue.2
, pp. 378-388
-
-
Speed, T.P.1
-
19
-
-
0005549291
-
Derivatives are essentially integer partitions
-
W.C. Yang, Derivatives are Essentially Integer Partitions, Discrete Mathematics, 222, 2000, pp. 235-245.
-
(2000)
Discrete Mathematics
, vol.222
, pp. 235-245
-
-
Yang, W.C.1
-
20
-
-
0005540572
-
Toward a combinatorial proof of the Jacobian conjecture
-
Springer-Verlag, Berlin
-
D. Zeilberger, "Toward a Combinatorial Proof of the Jacobian Conjecture", in Lecture Notes in Mathematics v. 1234, Combinatoire Énumérative, Springer-Verlag, Berlin, 1986.
-
(1986)
Lecture Notes in Mathematics V. 1234, Combinatoire Énumé rative
, vol.1234
-
-
Zeilberger, D.1
|