메뉴 건너뛰기




Volumn 48, Issue 3, 2007, Pages 327-341

The multivariate Faà di Bruno formula and multivariate Taylor expansions with explicit integral remainder term

Author keywords

Differentiation theory; Fa di Bruno formula; Integral remainder term; Multivariate composite functions; Multivariate Taylor series

Indexed keywords


EID: 36348969994     PISSN: 14461811     EISSN: None     Source Type: Journal    
DOI: 10.1017/s1446181100003527     Document Type: Article
Times cited : (24)

References (24)
  • 4
    • 21344454432 scopus 로고    scopus 로고
    • A multivariate Faà di Bruno formula with applications
    • G. M. Constantine and T. H. Savits, "A multivariate Faà di Bruno formula with applications", Trans. Amer. Math. Soc. 348 (1996) 503-520.
    • (1996) Trans. Amer. Math. Soc , vol.348 , pp. 503-520
    • Constantine, G.M.1    Savits, T.H.2
  • 5
    • 14544275417 scopus 로고    scopus 로고
    • Prehistory of FaA di Bruno's formula
    • A. D. D. Craik, "Prehistory of FaA di Bruno's formula", Amer Math. Month. 112 (2005) 119-130.
    • (2005) Amer Math. Month , vol.112 , pp. 119-130
    • Craik, A.D.D.1
  • 8
    • 0001666357 scopus 로고
    • Note sur une nouvelle formule de calcul différentiel
    • F. Faà di Bruno, "Note sur une nouvelle formule de calcul différentiel", Quart. J. Math. 1 (1857) 359-360.
    • (1857) Quart. J. Math , vol.1 , pp. 359-360
    • Faà di Bruno, F.1
  • 9
    • 0035534417 scopus 로고    scopus 로고
    • From Ford to Faà
    • H. Flanders, "From Ford to Faà", Amer Math. Month. 108 (2001) 559-561.
    • (2001) Amer Math. Month , vol.108 , pp. 559-561
    • Flanders, H.1
  • 10
    • 0004073624 scopus 로고
    • Cambridge University Press, Cambridge
    • R. H. Fowler, Statistical Mechanics (Cambridge University Press, Cambridge, 1936).
    • (1936) Statistical Mechanics
    • Fowler, R.H.1
  • 11
    • 0035982718 scopus 로고    scopus 로고
    • The generalized chain rule of differentiation with historical notes
    • H. W. Gould, "The generalized chain rule of differentiation with historical notes", Utilitas Mathematica 61 (2002) 97-106.
    • (2002) Utilitas Mathematica , vol.61 , pp. 97-106
    • Gould, H.W.1
  • 12
    • 0035995563 scopus 로고    scopus 로고
    • The curious history of Faà di Bruno's formula
    • W. P. Johnson, "The curious history of Faà di Bruno's formula", Amer Math. Month. 109 (2002) 217-234.
    • (2002) Amer Math. Month , vol.109 , pp. 217-234
    • Johnson, W.P.1
  • 13
  • 14
    • 0005645476 scopus 로고
    • Application of Faà di Bruno's formula in mathematical statistics
    • E. Lukács, "Application of Faà di Bruno's formula in mathematical statistics", Amer Math. Month. 62 (1955) 340-348.
    • (1955) Amer Math. Month , vol.62 , pp. 340-348
    • Lukács, E.1
  • 15
    • 0141802164 scopus 로고    scopus 로고
    • Generalization of the formula of Faà di Bruno for a composite function with a vector argument
    • R. Mishkov, "Generalization of the formula of Faà di Bruno for a composite function with a vector argument", Intern. J. Math. Sci. 24 (2000) 481-491.
    • (2000) Intern. J. Math. Sci , vol.24 , pp. 481-491
    • Mishkov, R.1
  • 16
    • 0037266203 scopus 로고    scopus 로고
    • Differentiation of multivariable composite functions and Bell polynomials
    • S. Noschese and P. E. Ricci, "Differentiation of multivariable composite functions and Bell polynomials", J. Comput. Anal. Appl. 5 (2003) 333-340.
    • (2003) J. Comput. Anal. Appl , vol.5 , pp. 333-340
    • Noschese, S.1    Ricci, P.E.2
  • 18
    • 0000819568 scopus 로고
    • The number of partitions of a set
    • G.-C. Rota, "The number of partitions of a set", Amer Math. Month. 71 (1964) 498-504.
    • (1964) Amer Math. Month , vol.71 , pp. 498-504
    • Rota, G.-C.1
  • 19
    • 0040635126 scopus 로고    scopus 로고
    • Geometric probability
    • G.-C. Rota, "Geometric probability", Math. Intell. 20 (1998) 11-16.
    • (1998) Math. Intell , vol.20 , pp. 11-16
    • Rota, G.-C.1
  • 23
    • 84971173382 scopus 로고
    • A chain rule for differentiation with application to multivariate hermite polynomials
    • C. S. Withers, "A chain rule for differentiation with application to multivariate hermite polynomials", Bull. Austral. Math. Soc. 30 (1984) 247-250.
    • (1984) Bull. Austral. Math. Soc , vol.30 , pp. 247-250
    • Withers, C.S.1
  • 24
    • 0005549291 scopus 로고    scopus 로고
    • Derivatives are essentially integer partitions
    • W. C. Yang, "Derivatives are essentially integer partitions", Discr Math. 222 (2000) 235-245.
    • (2000) Discr Math , vol.222 , pp. 235-245
    • Yang, W.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.