-
4
-
-
21344454432
-
A multivariate Faà di Bruno formula with applications
-
G. M. Constantine and T. H. Savits, "A multivariate Faà di Bruno formula with applications", Trans. Amer. Math. Soc. 348 (1996) 503-520.
-
(1996)
Trans. Amer. Math. Soc
, vol.348
, pp. 503-520
-
-
Constantine, G.M.1
Savits, T.H.2
-
5
-
-
14544275417
-
Prehistory of FaA di Bruno's formula
-
A. D. D. Craik, "Prehistory of FaA di Bruno's formula", Amer Math. Month. 112 (2005) 119-130.
-
(2005)
Amer Math. Month
, vol.112
, pp. 119-130
-
-
Craik, A.D.D.1
-
8
-
-
0001666357
-
Note sur une nouvelle formule de calcul différentiel
-
F. Faà di Bruno, "Note sur une nouvelle formule de calcul différentiel", Quart. J. Math. 1 (1857) 359-360.
-
(1857)
Quart. J. Math
, vol.1
, pp. 359-360
-
-
Faà di Bruno, F.1
-
9
-
-
0035534417
-
From Ford to Faà
-
H. Flanders, "From Ford to Faà", Amer Math. Month. 108 (2001) 559-561.
-
(2001)
Amer Math. Month
, vol.108
, pp. 559-561
-
-
Flanders, H.1
-
10
-
-
0004073624
-
-
Cambridge University Press, Cambridge
-
R. H. Fowler, Statistical Mechanics (Cambridge University Press, Cambridge, 1936).
-
(1936)
Statistical Mechanics
-
-
Fowler, R.H.1
-
11
-
-
0035982718
-
The generalized chain rule of differentiation with historical notes
-
H. W. Gould, "The generalized chain rule of differentiation with historical notes", Utilitas Mathematica 61 (2002) 97-106.
-
(2002)
Utilitas Mathematica
, vol.61
, pp. 97-106
-
-
Gould, H.W.1
-
12
-
-
0035995563
-
The curious history of Faà di Bruno's formula
-
W. P. Johnson, "The curious history of Faà di Bruno's formula", Amer Math. Month. 109 (2002) 217-234.
-
(2002)
Amer Math. Month
, vol.109
, pp. 217-234
-
-
Johnson, W.P.1
-
14
-
-
0005645476
-
Application of Faà di Bruno's formula in mathematical statistics
-
E. Lukács, "Application of Faà di Bruno's formula in mathematical statistics", Amer Math. Month. 62 (1955) 340-348.
-
(1955)
Amer Math. Month
, vol.62
, pp. 340-348
-
-
Lukács, E.1
-
15
-
-
0141802164
-
Generalization of the formula of Faà di Bruno for a composite function with a vector argument
-
R. Mishkov, "Generalization of the formula of Faà di Bruno for a composite function with a vector argument", Intern. J. Math. Sci. 24 (2000) 481-491.
-
(2000)
Intern. J. Math. Sci
, vol.24
, pp. 481-491
-
-
Mishkov, R.1
-
16
-
-
0037266203
-
Differentiation of multivariable composite functions and Bell polynomials
-
S. Noschese and P. E. Ricci, "Differentiation of multivariable composite functions and Bell polynomials", J. Comput. Anal. Appl. 5 (2003) 333-340.
-
(2003)
J. Comput. Anal. Appl
, vol.5
, pp. 333-340
-
-
Noschese, S.1
Ricci, P.E.2
-
18
-
-
0000819568
-
The number of partitions of a set
-
G.-C. Rota, "The number of partitions of a set", Amer Math. Month. 71 (1964) 498-504.
-
(1964)
Amer Math. Month
, vol.71
, pp. 498-504
-
-
Rota, G.-C.1
-
19
-
-
0040635126
-
Geometric probability
-
G.-C. Rota, "Geometric probability", Math. Intell. 20 (1998) 11-16.
-
(1998)
Math. Intell
, vol.20
, pp. 11-16
-
-
Rota, G.-C.1
-
23
-
-
84971173382
-
A chain rule for differentiation with application to multivariate hermite polynomials
-
C. S. Withers, "A chain rule for differentiation with application to multivariate hermite polynomials", Bull. Austral. Math. Soc. 30 (1984) 247-250.
-
(1984)
Bull. Austral. Math. Soc
, vol.30
, pp. 247-250
-
-
Withers, C.S.1
-
24
-
-
0005549291
-
Derivatives are essentially integer partitions
-
W. C. Yang, "Derivatives are essentially integer partitions", Discr Math. 222 (2000) 235-245.
-
(2000)
Discr Math
, vol.222
, pp. 235-245
-
-
Yang, W.C.1
|