메뉴 건너뛰기




Volumn 7, Issue , 2009, Pages 1-153

Markov logic: An interface layer for artificial intelligence

Author keywords

Belief propagation; First order logic; Graphical models; Inductive logic programming; Machine learning; Markov chain Monte Carlo; Markov logic; Markov networks; Markov random fields; Probabilistic logic; Satisfiability; Statistical relational learning

Indexed keywords

BELIEF PROPAGATION; FIRST-ORDER LOGIC; GRAPHICAL MODELS; INDUCTIVE LOGIC PROGRAMMING; MACHINE LEARNING; MARKOV CHAIN MONTE CARLO; MARKOV LOGIC; MARKOV NETWORKS; MARKOV RANDOM FIELDS; SATISFIABILITY; STATISTICAL RELATIONAL LEARNING;

EID: 68049142277     PISSN: 19394608     EISSN: 19394616     Source Type: Book Series    
DOI: 10.2200/S00206ED1V01Y200907AIM007     Document Type: Article
Times cited : (132)

References (156)
  • 2
    • 0030283418 scopus 로고    scopus 로고
    • F. Bacchus, A. J. Grove, J. Y. Halpern, and D. Koller. From statistical knowledge bases to degrees of belief. Artificial Intelligence, 87:75-143, 1996.DOI: 10.1016/S0004-3702(96)00003-3
    • F. Bacchus, A. J. Grove, J. Y. Halpern, and D. Koller. From statistical knowledge bases to degrees of belief. Artificial Intelligence, 87:75-143, 1996.DOI: 10.1016/S0004-3702(96)00003-3
  • 6
    • 0000582521 scopus 로고    scopus 로고
    • Statistical analysis of non-lattice data
    • DOI: 10.2307/2987782
    • J. Besag. Statistical analysis of non-lattice data. The Statistician, 24:179-195, 1975. DOI: 10.2307/2987782
    • The Statistician , vol.24 , Issue.179-195 , pp. 1975
    • Besag, J.1
  • 15
    • 85127836544 scopus 로고    scopus 로고
    • Discriminative training methods for hidden Markov models: Theory andexperiments with perceptron algorithms
    • Philadelphia, PA, ACL. DOI: 10.3115/1118693.1118694
    • M. Collins. Discriminative training methods for hidden Markov models: Theory andexperiments with perceptron algorithms. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing, pages 1-8, Philadelphia, PA, 2002. ACL. DOI: 10.3115/1118693.1118694
    • (2002) Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing , pp. 1-8
    • Collins, M.1
  • 16
    • 0035312953 scopus 로고    scopus 로고
    • M. Craven and S. Slattery. Relational learning with statistical predicate invention: Better models for hypertext. MachineLearning, 43(1/2):97-119,2001.DOI: 10.1023/A:1007676901476
    • M. Craven and S. Slattery. Relational learning with statistical predicate invention: Better models for hypertext. MachineLearning, 43(1/2):97-119,2001.DOI: 10.1023/A:1007676901476
  • 19
    • 0033481108 scopus 로고    scopus 로고
    • Gibbs sampling for Bayesian non-conjugate and hierarchical models by auxiliary variables
    • DOI: 10.1111/1467-9868.00179
    • P. Damien, J. Wakefield, and S. Walker. Gibbs sampling for Bayesian non-conjugate and hierarchical models by auxiliary variables. Journal of the Royal Statistical Society, Series B, 61:331-344, 1999. DOI: 10.1111/1467-9868.00179
    • Journal of the Royal Statistical Society, Series B , vol.61 , Issue.331-344 , pp. 1999
    • Damien, P.1    Wakefield, J.2    Walker, S.3
  • 22
    • 0031073733 scopus 로고    scopus 로고
    • Clausal discovery
    • DOI: 10.1023/A:1007361123060
    • L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 26:99-146, 1997. DOI: 10.1023/A:1007361123060
    • (1997) Machine Learning , vol.26 , pp. 99-146
    • De Raedt, L.1    Dehaspe, L.2
  • 27
    • 84858428184 scopus 로고    scopus 로고
    • Joint determination of anaphoricity and coreference resolutiusing integer programming
    • Rochester, New York, ACL
    • P. Denis and J. Baldridge. Joint determination of anaphoricity and coreference resolutiusing integer programming. In Proceedings of NAACL HLT2007, pages 236-243, Rochester, New York, 2007. ACL.
    • (2007) Proceedings of NAACL HLT2007 , pp. 236-243
    • Denis, P.1    Baldridge, J.2
  • 30
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • DOI: 10.1023/A:1007413511361
    • P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29:103-130,1997. DOI: 10.1023/A:1007413511361
    • (1997) Machine Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 32
    • 0035312760 scopus 로고    scopus 로고
    • S. Dzeroski and L. De Raedt. Relational reinforcement learning. In Proceedings of the Fifteenth International Conference on Machine Learning, pages 136-143, Madison, WI, 1998. Morgan Kaufmann. DOI: 10.1023/A:1007694015589
    • S. Dzeroski and L. De Raedt. Relational reinforcement learning. In Proceedings of the Fifteenth International Conference on Machine Learning, pages 136-143, Madison, WI, 1998. Morgan Kaufmann. DOI: 10.1023/A:1007694015589
  • 33
    • 0011177327 scopus 로고    scopus 로고
    • S. Dzeroski and N. Lavrac, editors, Springer, Berlin, Germany
    • S. Dzeroski and N. Lavrac, editors. Relational Data mining. Springer, Berlin, Germany, 2001.
    • (2001) Relational Data mining
  • 34
    • 0004289791 scopus 로고    scopus 로고
    • C. Fellbaum, editor, MIT Press, Cambridge, MA
    • C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, Cambridge, MA, 1998.
    • (1998) WordNet: An Electronic Lexical Database
  • 39
    • 34547980383 scopus 로고    scopus 로고
    • L. Getoor and B. Taskar, editors, MIT Press, Cambridge, MA
    • L. Getoor and B. Taskar, editors. Introduction to Statistical Relational Learning. MIT Press, Cambridge, MA, 2007.
    • (2007) Introduction to Statistical Relational Learning
  • 40
    • 0003860037 scopus 로고    scopus 로고
    • W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors, Chapman and Hall, London, UK
    • W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov Chain Monte Carlo in Practice. Chapman and Hall, London, UK, 1996.
    • (1996) Markov Chain Monte Carlo in Practice
  • 41
    • 84859881704 scopus 로고    scopus 로고
    • Unsupervised learning of field segmentation models for information extraction
    • Ann Arbor, Michigan, Association for Computational Linguistics. DOI: 10.3115/1219840.1219886
    • T. Grenager, D. Klein, and C. D. Manning. Unsupervised learning of field segmentation models for information extraction. In Proceedings of the Forty-Third Annual Meeting on Association for Computational Linguistics, pages 371-378, Ann Arbor, Michigan, 2005. Association for Computational Linguistics. DOI: 10.3115/1219840.1219886
    • (2005) Proceedings of the Forty-Third Annual Meeting on Association for Computational Linguistics , pp. 371-378
    • Grenager, T.1    Klein, D.2    Manning, C.D.3
  • 43
    • 0025535649 scopus 로고    scopus 로고
    • An analysis of first-order logics of probability
    • DOI: 10.1016/0004-3702(90) 90019-V
    • J. Halpern. An analysis of first-order logics of probability. Artificial Intelligence, 46:311-350, 1990. DOI: 10.1016/0004-3702(90) 90019-V
    • Artificial Intelligence , vol.46 , Issue.311-350 , pp. 1990
    • Halpern, J.1
  • 44
    • 0002123103 scopus 로고    scopus 로고
    • Dependency networks for inference, collaborative filtering, and data visualization
    • DOI: 10.1162/153244301753344614
    • D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie. Dependency networks for inference, collaborative filtering, and data visualization. Journal of Machine Learning Research, 1:49-75, 2000. DOI: 10.1162/153244301753344614
    • Journal of Machine Learning Research , vol.1 , Issue.49-75 , pp. 2000
    • Heckerman, D.1    Chickering, D.M.2    Meek, C.3    Rounthwaite, R.4    Kadie, C.5
  • 45
    • 34249761849 scopus 로고    scopus 로고
    • Learning Bayesian networks: Thcombination of knowledge and statistical data
    • DOI: 10.1007/BF00994016
    • D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: Thcombination of knowledge and statistical data. Machine Learning, 20:197-243, 1995. DOI: 10.1007/BF00994016
    • Machine Learning , vol.20 , Issue.197-243 , pp. 1995
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 47
    • 0013344078 scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • DOI: 10.1162/089976602760128018
    • G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8):1771-1800, 2002. DOI: 10.1162/089976602760128018
    • (1771) Neural Computation , vol.14 , Issue.8 , pp. 2002
    • Hinton, G.E.1
  • 48
    • 33749596111 scopus 로고    scopus 로고
    • Influence diagrams
    • DOI: 10.1287/deca.1050.0020
    • R. A. Howard and J. E. Matheson. Influence diagrams. Decision Analysis, 2(3):127-143,2005. DOI: 10.1287/deca.1050.0020
    • (2005) Decision Analysis , vol.2 , Issue.3 , pp. 127-143
    • Howard, R.A.1    Matheson, J.E.2
  • 50
    • 56449093057 scopus 로고    scopus 로고
    • Discriminative structure and parameter learning for Markov logicnetworks
    • Helsinki, Finland, ACM Press. DOI: 10.1145/1390156.1390209
    • T. Huynh and R. Mooney. Discriminative structure and parameter learning for Markov logicnetworks. In Proceedings of the Twenty-Fifth International Conference on Machine Learning, pages 416-423, Helsinki, Finland, 2008. ACM Press. DOI: 10.1145/1390156.1390209
    • (2008) Proceedings of the Twenty-Fifth International Conference on Machine Learning , pp. 416-423
    • Huynh, T.1    Mooney, R.2
  • 53
    • 0041849711 scopus 로고    scopus 로고
    • A general stochastic approach to solving problems with hard and soft constraints
    • D. Gu, J. Du, and P. Pardalos, editors, American Mathematical Society, New York, NY
    • H. Kautz, B. Selman, and Y. Jiang. A general stochastic approach to solving problems with hard and soft constraints. In D. Gu, J. Du, and P. Pardalos, editors, The Satisfiability Problem: Theory and Applications, pages 573-586. American Mathematical Society, New York, NY, 1997.
    • (1997) The Satisfiability Problem: Theory and Applications , pp. 573-586
    • Kautz, H.1    Selman, B.2    Jiang, Y.3
  • 59
    • 56049102891 scopus 로고    scopus 로고
    • Extracting semantic networks from text via relational clustering
    • Antwerp, Belgium, Springer. DOI: 10.1007/978-3-540-87479-9-59
    • S. Kok and P. Domingos. Extracting semantic networks from text via relational clustering. In Proceedings of the Nineteenth European Conference on Machine Learning, pages 624-639, Antwerp, Belgium, 2008. Springer. DOI: 10.1007/978-3-540-87479-9-59
    • (2008) Proceedings of the Nineteenth European Conference on Machine Learning , pp. 624-639
    • Kok, S.1    Domingos, P.2
  • 60
    • 33749545442 scopus 로고    scopus 로고
    • The Alchemy system for statistical relational AI
    • Technical report, Department of Computer Science and Engineering, University of Washington, Seattle, WA
    • S. Kok, M. Sumner, M. Richardson, P. Singla, H. Poon, D. Lowd, and P. Domin- gos. The Alchemy system for statistical relational AI. Technical report, Department of Computer Science and Engineering, University of Washington, Seattle, WA, 2007.〈http://alchemy.cs.washington.edu〉.
    • (2007)
    • Kok, S.1    Sumner, M.2    Richardson, M.3    Singla, P.4    Poon, H.5    Lowd, D.6    Domin- gos, P.7
  • 63
    • 0034172374 scopus 로고    scopus 로고
    • Wrapper induction: Efficiency and expressiveness
    • DOI: 10.1016/S0004- 3702(99)00100-9
    • N. Kushmerick. Wrapper induction: Efficiency and expressiveness. Artificial Intelligence, 118(1-2):15-68, 2000. DOI: 10.1016/S0004- 3702(99)00100-9
    • (2000) Artificial Intelligence , vol.118 , Issue.1-2 , pp. 15-68
    • Kushmerick, N.1
  • 68
    • 56449098139 scopus 로고    scopus 로고
    • An asymptotic analysis of generative, discriminative, and pseudolikelihood estimators
    • Helsinki, Finland, ACM Press. DOI: 10.1145/1390156.1390230
    • P. Liang and M. I. Jordan. An asymptotic analysis of generative, discriminative, and pseudolikelihood estimators. In Proceedings of the Twenty-Fifth International Conference on Machine Learning, pages 584-591, Helsinki, Finland, 2008. ACM Press. DOI: 10.1145/1390156.1390230
    • (2008) Proceedings of the Twenty-Fifth International Conference on Machine Learning , pp. 584-591
    • Liang, P.1    Jordan, M.I.2
  • 71
    • 33646887390 scopus 로고
    • On the limited memory BFGS method for large scale optimization
    • DOI: 10.1007/BF01589116
    • D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization. Mathematical Programming, 45(3):503-528,1989. DOI: 10.1007/BF01589116
    • (1989) Mathematical Programming , vol.45 , Issue.3 , pp. 503-528
    • Liu, D.C.1    Nocedal, J.2
  • 73
    • 0036327341 scopus 로고    scopus 로고
    • Differentiating stages of smoking intensity among adolescents: Stage-specific psychologicaland social influences
    • DOI: 10.1037/0022-006X.70.4.998
    • E. Lloyd-Richardson, A. Kazura, C. Stanton, R. Niaura, and G. Papandonatos. Differentiating stages of smoking intensity among adolescents: Stage-specific psychologicaland social influences. Journal of Consulting and Clinical Psychology, 70(4):998-1009, 2002. DOI: 10.1037/0022-006X.70.4.998
    • (2002) Journal of Consulting and Clinical Psychology , vol.70 , Issue.4 , pp. 998-1009
    • Lloyd-Richardson, E.1    Kazura, A.2    Stanton, C.3    Niaura, R.4    Papandonatos, G.5
  • 75
    • 38049174896 scopus 로고    scopus 로고
    • D. Lowd and P. Domingos. Efficient weight learning for Markov logic networks. In Proceedings of the Eleventh European Conference on Principles and Practice of Knowledge Discovery in Databases, pages 200-211, Warsaw, Poland, 2007. Springer. OI: 10.1007/978-3-540-74976-9-21
    • D. Lowd and P. Domingos. Efficient weight learning for Markov logic networks. In Proceedings of the Eleventh European Conference on Principles and Practice of Knowledge Discovery in Databases, pages 200-211, Warsaw, Poland, 2007. Springer. OI: 10.1007/978-3-540-74976-9-21
  • 80
    • 33646765912 scopus 로고    scopus 로고
    • Conditional models of identity uncertainty with application to noun coreference
    • Cambridge, MA, MIT Press
    • A. McCallum and B. Wellner. Conditional models of identity uncertainty with application to noun coreference. In Advances in Neural Information Processing Systems 17, pages 905-912, Cambridge, MA, 2005. MIT Press.
    • (2005) Advances in Neural Information Processing Systems 17 , pp. 905-912
    • McCallum, A.1    Wellner, B.2
  • 81
    • 0037293358 scopus 로고    scopus 로고
    • An upper level ontology for the biomedical domain
    • DOI: 10.1002/cfg.255
    • A.T. McCray. An upper level ontology for the biomedical domain. Comparative and Functional Genomics, 4:80-84, 2003. DOI: 10.1002/cfg.255
    • Comparative and Functional Genomics , vol.4 , Issue.80-84 , pp. 2003
    • McCray, A.T.1
  • 86
    • 0027205884 scopus 로고    scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • DOI: 10.1016/S0893-6080(05) 80056-5
    • M. Meller. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6:525-533, 1993. DOI: 10.1016/S0893-6080(05) 80056-5
    • Neural Networks , vol.6 , Issue.525-533 , pp. 1993
    • Meller, M.1
  • 87
    • 0002205343 scopus 로고    scopus 로고
    • Stochastic logic programs
    • L. De Raedt, editor, IOS Press, Amsterdam, Netherlands
    • S. Muggleton. Stochastic logic programs. In L. De Raedt, editor, Advances in Inductive Logic Programming, pages 254-264. IOS Press, Amsterdam, Netherlands, 1996.
    • (1996) Advances in Inductive Logic Programming , pp. 254-264
    • Muggleton, S.1
  • 88
    • 0002304628 scopus 로고
    • Efficient induction of logic programs
    • S. Muggleton, editor, Morgan Kaufmann
    • S. Muggleton and C. Feng. Efficient induction of logic programs. In S. Muggleton, editor, Inductive Logic Programming, pages 281-298. Morgan Kaufmann, 1992.
    • (1992) Inductive Logic Programming , pp. 281-298
    • Muggleton, S.1    Feng, C.2
  • 90
    • 12244307639 scopus 로고    scopus 로고
    • Collective classification with relational dependency networks
    • S. Dzeroski, L. De Raedt, and S. Wrobel, editors, Washington, DC, ACM Press
    • J. Neville and D. Jensen. Collective classification with relational dependency networks. In S. Dzeroski, L. De Raedt, and S. Wrobel, editors, Proceedings of the Second International Workshop on Multi-Relational Data Mining, pages 77-91, Washington, DC, 2003. ACM Press.
    • (2003) Proceedings of the Second International Workshop on Multi-Relational Data Mining , pp. 77-91
    • Neville, J.1    Jensen, D.2
  • 91
    • 84957881419 scopus 로고    scopus 로고
    • Leveraging relational autocorrelation with latent group models
    • New Orleans, LA, IEEE Computer Society Press. DOI: 10.1109/ICDM.2005.89
    • J. Neville and D.Jensen. Leveraging relational autocorrelation with latent group models. In Proceedings of the Fifth IEEE International Conference on Data Mining, pages 49-55, New Orleans, LA, 2005. IEEE Computer Society Press. DOI: 10.1109/ICDM.2005.89
    • (2005) Proceedings of the Fifth IEEE International Conference on Data Mining , pp. 49-55
    • Neville, J.1    Jensen, D.2
  • 92
    • 84859892597 scopus 로고    scopus 로고
    • Machine learning for coreference resolution: From local classification to global ranking
    • Ann Arbor, MI, ACL. DOI: 10.3115/1219840.1219860
    • V. Ng. Machine learning for coreference resolution: From local classification to global ranking.In Proceedings of the 43 th Annual Meeting of the Association for Computational Linguistics, pages 157-164, Ann Arbor, MI, 2005. ACL. DOI: 10.3115/1219840.1219860
    • (2005) Proceedings of the 43 th Annual Meeting of the Association for Computational Linguistics , pp. 157-164
    • Ng, V.1
  • 93
    • 0030737325 scopus 로고    scopus 로고
    • Answering queries from context-sensitive probabilistic knowledge bases
    • DOI: 10.1016/S0304-3975(96)00128-4
    • L. Ngo and P. Haddawy. Answering queries from context-sensitive probabilistic knowledge bases. Theoretical Computer Science, 171:147-177, 1997. DOI: 10.1016/S0304-3975(96)00128-4
    • Theoretical Computer Science , vol.171 , Issue.147-177 , pp. 1997
    • Ngo, L.1    Haddawy, P.2
  • 94
    • 0022659563 scopus 로고
    • Probabilistic logic
    • DOI: 10.1016/0004-3702(86)90031-7
    • N. Nilsson. Probabilistic logic. Artificial Intelligence, 28:71-87, 1986. DOI: 10.1016/0004-3702(86)90031-7]
    • (1986) Artificial Intelligence , vol.28 , pp. 71-87
    • Nilsson, N.1
  • 97
    • 68049132373 scopus 로고    scopus 로고
    • M. Paskin. Maximum entropy probabilistic logic. Technical Report UCB/CSD-01-1161, Computer Science Division, University of California, Berkeley, CA, 2002
    • M. Paskin. Maximum entropy probabilistic logic. Technical Report UCB/CSD-01-1161, Computer Science Division, University of California, Berkeley, CA, 2002
  • 100
    • 0000255539 scopus 로고
    • Fast exact multiplication by the Hessian
    • DOI: 10.1162/neco.1994.6.1.147
    • B. Pearlmutter. Fast exact multiplication by the Hessian. Neural Computation, 6(1):147-160, 1994. DOI: 10.1162/neco.1994.6.1.147
    • (1994) Neural Computation , vol.6 , Issue.1 , pp. 147-160
    • Pearlmutter, B.1
  • 102
    • 0242641721 scopus 로고    scopus 로고
    • Combinatorial stochastic processes
    • Technical Report 621, Department of Statistics, University of California at Berkeley, Berkeley, CA
    • J. Pitman. Combinatorial stochastic processes. Technical Report 621, Department of Statistics, University of California at Berkeley, Berkeley, CA, 2002.
    • (2002)
    • Pitman, J.1
  • 103
    • 0027702434 scopus 로고
    • Probabilistic Horn abduction and Bayesian networks
    • DOI: 10.1016/0004-3702(93)90061- F
    • D. Poole. Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence, 64:81129, 1993. DOI: 10.1016/0004-3702(93)90061- F
    • (1993) Artificial Intelligence , vol.64 , pp. 81129
    • Poole, D.1
  • 109
    • 32044446456 scopus 로고    scopus 로고
    • Structural logistic regression for link analysis
    • S. Džeroski, L. De Raedt, and S. Wrobel, editors, Washington, DC, ACM Press
    • A. Popescul and L. H. Ungar. Structural logistic regression for link analysis. In S. Džeroski, L. De Raedt, and S. Wrobel, editors, Proceedings of the Second International Workshop on Multi- Relational Data Mining, pages 92-106, Washington, DC, 2003. ACM Press.
    • (2003) Proceedings of the Second International Workshop on Multi- Relational Data Mining , pp. 92-106
    • Popescul, A.1    Ungar, L.H.2
  • 112
    • 0002638429 scopus 로고
    • Semantic memory
    • M. L. Minsky, editor, MIT Press, Cambridge, MA
    • M. R. Quillian. Semantic memory. In M. L. Minsky, editor, Semantic Information Processing, pages 216-270. MIT Press, Cambridge, MA, 1968.
    • (1968) Semantic Information Processing , pp. 216-270
    • Quillian, M.R.1
  • 113
    • 0001172265 scopus 로고    scopus 로고
    • Learning logical definitions from relations
    • DOI: 10.1007/BF00117105
    • J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5:239-266, 1990. DOI: 10.1007/BF00117105
    • Machine Learning , vol.5 , Issue.239-266 , pp. 1990
    • Quinlan, J.R.1
  • 115
    • 0029308579 scopus 로고
    • Automated refinement of first-order Horn-clause domain theories
    • DOI: 10.1007/BF01007461
    • B. L. Richards and R.J. Mooney. Automated refinement of first-order Horn-clause domain theories. Machine Learning, 19(2):95-131, 1995. DOI: 10.1007/BF01007461
    • (1995) Machine Learning , vol.19 , Issue.2 , pp. 95-131
    • Richards, B.L.1    Mooney, R.J.2
  • 116
    • 85007239362 scopus 로고    scopus 로고
    • M. Richardson and P. Domingos. Building large knowledge bases by mass collaboration. In Proceedings of the Second International Conference on Knowledge Capture, pages 129-137, Sanibel Island, FL, 2003. ACM Press. DOI: 10.1145/945645.945665
    • M. Richardson and P. Domingos. Building large knowledge bases by mass collaboration. In Proceedings of the Second International Conference on Knowledge Capture, pages 129-137, Sanibel Island, FL, 2003. ACM Press. DOI: 10.1145/945645.945665
  • 117
    • 32044466073 scopus 로고    scopus 로고
    • Markov logic networks.
    • DOI: 10.1007/s10994-006-5833-1
    • M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62:107-136, 2006. DOI: 10.1007/s10994-006-5833-1
    • Machine Learning , vol.62 , Issue.107-136 , pp. 2006
    • Richardson, M.1    Domingos, P.2
  • 121
    • 68049130759 scopus 로고    scopus 로고
    • Probabilistic Constraint Logic Programming. PhD thesis, University of Tubingen, Tubingen, Germany
    • S. Riezler. Probabilistic Constraint Logic Programming. PhD thesis, University of Tubingen, Tubingen, Germany, 1998.
    • (1998)
    • Riezler, S.1
  • 122
    • 84918983692 scopus 로고    scopus 로고
    • A machine-oriented logic based on the resolution principle
    • DOI: 10.1145/321250.321253
    • J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM, 12:23-41, 1965. DOI: 10.1145/321250.321253
    • Journal of the ACM , vol.12 , Issue.23-41 , pp. 1965
    • Robinson, J.A.1
  • 123
    • 0030120958 scopus 로고    scopus 로고
    • On the hardness of approximate reasoning
    • DOI: 10.1016/0004-3702(94)00092-1
    • D. Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82:273-302,1996. DOI: 10.1016/0004-3702(94)00092-1
    • Artificial Intelligence , vol.82 , Issue.273-302 , pp. 1996
    • Roth, D.1
  • 126
    • 84877728550 scopus 로고    scopus 로고
    • Dimensionality of nations project: Attributes of nations and behavior of nation dyads, 1950 -1965
    • DOI: 10.3886/ICPSR05409
    • R. J. Rummel. Dimensionality of nations project: attributes of nations and behavior of nation dyads, 1950 -1965. ICPSR data file. 1999. DOI: 10.3886/ICPSR05409
    • (1999) ICPSR data file
    • Rummel, R.J.1
  • 132
    • 0003621102 scopus 로고
    • An introduction to the conjugate gradient method without the agonizing pain
    • Technical Report CMU-CS-94-125, School of Computer Science, Carnegie Mellon University
    • J. Shewchuck. An introduction to the conjugate gradient method without the agonizing pain. Technical Report CMU-CS-94-125, School of Computer Science, Carnegie Mellon University, 1994.
    • (1994)
    • Shewchuck, J.1
  • 137
    • 68049119717 scopus 로고    scopus 로고
    • P. Singla and P. Domingos. Markov logic in infinite domains. Technical report, Dept. Comp. Sci. &Eng., Univ. Washington, 2007.〈http://alchemy. cs.washington.edu/papers/singla07/tr.pdf〉.
    • P. Singla and P. Domingos. Markov logic in infinite domains. Technical report, Dept. Comp. Sci. &Eng., Univ. Washington, 2007.〈http://alchemy. cs.washington.edu/papers/singla07/tr.pdf〉.
  • 140
    • 2542454374 scopus 로고    scopus 로고
    • The Aleph manual
    • Technical report, Computing Laboratory, Oxford University
    • A. Srinivasan. The Aleph manual. Technical report, Computing Laboratory, Oxford University, 2000.
    • (2000)
    • Srinivasan, A.1
  • 145
    • 0028529307 scopus 로고    scopus 로고
    • Knowledge-based artificial neural networks
    • DOI: 10.1016/0004-3702(94)90105-8
    • G. G. Towell and J. W. Shavlik. Knowledge-based artificial neural networks. Artificial Intelligence, 70:119-165, 1994. DOI: 10.1016/0004-3702(94)90105-8
    • Artificial Intelligence , vol.70 , Issue.119-165 , pp. 1994
    • Towell, G.G.1    Shavlik, J.W.2
  • 146
    • 37249061374 scopus 로고    scopus 로고
    • A survey of reinforcement learning in relational domains
    • Technical report, University of Twente
    • M. van Otterlo. A survey of reinforcement learning in relational domains. Technical report, University of Twente, 2005.
    • (2005)
    • van Otterlo, M.1
  • 154
    • 57349152295 scopus 로고    scopus 로고
    • Automatically refining the Wikipedia infobox ontology
    • Beijing,China, ACM Press. DOI: 10.1145/1367497.1367583
    • F. Wu and D. Weld. Automatically refining the Wikipedia infobox ontology. In Proceedings of the 17th International World Wide Web Conference, pages 635-644, Beijing,China, 2008. ACM Press. DOI: 10.1145/1367497.1367583
    • (2008) Proceedings of the 17th International World Wide Web Conference , pp. 635-644
    • Wu, F.1    Weld, D.2
  • 156
    • 84898975095 scopus 로고    scopus 로고
    • Generalized belief propagation
    • T. Leen, T. Dietterich, and V. Tresp, editors, MIT Press, Cambridge, MA
    • J. S. Yedidia, W. T. Freeman, and Y. Weiss. Generalized belief propagation. In T. Leen, T. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 689-695. MIT Press, Cambridge, MA, 2001.
    • (2001) Advances in Neural Information Processing Systems 13 , pp. 689-695
    • Yedidia, J.S.1    Freeman, W.T.2    Weiss, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.