메뉴 건너뛰기




Volumn 20, Issue 3, 1995, Pages 197-243

Learning Bayesian Networks: The Combination of Knowledge and Statistical Data

Author keywords

Bayesian networks; Dirichlet; heuristic search; learning; likelihood equivalence; maximum branching

Indexed keywords


EID: 34249761849     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1023/A:1022623210503     Document Type: Article
Times cited : (2737)

References (52)
  • 3
    • 84951647142 scopus 로고    scopus 로고
    • Buntine, W. (1991). Theory refinement on Bayesian networks. In Proceedings of Seventh Conference on Uncertainty in Artificial Intelligence, Los Angeles, CA, pages 52–60. Morgan Kaufmann.
  • 5
    • 84951647143 scopus 로고    scopus 로고
    • Chickering, D. (1995a). A transformational characterization of equivalent Bayesian-network structures. In Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence, Montreal, QU, pages 87–98. Morgan Kaufmann.
  • 7
    • 84951647144 scopus 로고    scopus 로고
    • Chickering, D., Geiger, D., & Heckerman, D. (1995). Learning Bayesian networks: Search methods and experimental results. In Proceedings of Fifth Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, pages 112–128. Society for Artificial Intelligence in Statistics.
  • 10
    • 84951647145 scopus 로고    scopus 로고
    • Cooper, G. & Herskovits, E. (January, 1991). A Bayesian method for the induction of probabilistic networks from data. Technical Report SMI-91-1, Section on Medical Informatics, Stanford University.
  • 14
    • 84951647146 scopus 로고    scopus 로고
    • Druzdzel, M. & Simon, H. (1993). Causality in Bayesian belief networks. In Proceedings of Ninth Conference on Uncertainty in Artificial Intelligence, Washington, DC, pages 3–11. Morgan Kaufmann.
  • 18
    • 85025882433 scopus 로고    scopus 로고
    • Gabow, H., Galil, Z., & Spencer, T. (1984). Efficient implementation of graph algorithms using contraction. In Proceedings of FOCS.
  • 19
    • 84951647148 scopus 로고    scopus 로고
    • Geiger, D. & Heckerman, D. (1994). Learning Gaussian networks. In Proceedings of Tenth Conference on Uncertainty in Artificial Intelligence, Seattle, WA, pages 235–243. Morgan Kaufmann.
  • 20
    • 84951647149 scopus 로고    scopus 로고
    • Geiger, D. & Heckerman, D. (1995). A characterization of the Dirichlet distribution with application to learning Bayesian networks. In Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence, Montreal, QU, pages 196–207. Morgan Kaufmann.
  • 22
    • 84951647150 scopus 로고    scopus 로고
    • Heckerman, D. (1995). A Bayesian approach for learning causal networks. In Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence, Montreal, QU, pages 285–295. Morgan Kaufmann.
  • 23
    • 84951647151 scopus 로고    scopus 로고
    • Heckerman, D. & Geiger, D. (1995). Learning Bayesian networks: A unification for discrete and Gaussian domains. In Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence, Montreal, QU, pages 274–284. Morgan Kaufmann.
  • 24
    • 84951647152 scopus 로고    scopus 로고
    • Heckerman, D., Geiger, D., & Chickering, D. (1994). Learning Bayesian networks: The combination of knowledge and statistical data. In Proceedings of Tenth Conference on Uncertainty in Artificial Intelligence, Seattle, WA, pages 293–301. Morgan Kaufmann.
  • 26
    • 84951647153 scopus 로고    scopus 로고
    • Heckerman, D. & Shachter, R. (1995). A definition and graphical representation of causality. In Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence, Montreal, QU, pages 262–273. Morgan Kaufmann.
  • 27
    • 84951647154 scopus 로고    scopus 로고
    • Höffgen, K. (revised 1993). Learning and robust learning of product distributions. Technical Report 464, Fachbereich Informatik, Universität Dortmund.
  • 29
    • 0023822855 scopus 로고
    • Uncertainty about probability: A decision-analysis perspective
    • (1988) Risk Analysis , vol.8 , pp. 91-98
    • Howard, R.1
  • 31
    • 84951647156 scopus 로고    scopus 로고
    • Johnson (1985). How fast is local search? In FOCS, pages 39–42.
  • 32
    • 84981575514 scopus 로고
    • A simple derivation of Edmond's algorithm for optimal branchings
    • (1971) Networks , vol.1 , pp. 265-272
    • Karp, R.1
  • 36
    • 84951647157 scopus 로고    scopus 로고
    • Lam, W. & Bacchus, F. (1993). Using causal information and local measures to learn Bayesian networks. In Proceedings of Ninth Conference on Uncertainty in Artificial Intelligence, Washington, DC, pages 243–250. Morgan Kaufmann.
  • 38
    • 85025857776 scopus 로고    scopus 로고
    • Madigan, D. & Raftery, A. (1994). Model selection and accounting for model uncertainty in graphical models using Occam's window. Journal of the American Statistical Association, 89.
  • 39
    • 84951647159 scopus 로고    scopus 로고
    • Matzkevich, I. & Abramson, B. (1993). Deriving a minimal I-map of a belief network relative to a target ordering of its nodes. In Proceedings of Ninth Conference on Uncertainty in Artificial Intelligence, Washington, DC, pages 159–165. Morgan Kaufmann.
  • 46
    • 84951647160 scopus 로고    scopus 로고
    • Spirtes, P. & Meek, C. (1995). Learning Bayesian networks with discrete variables from data. In Proceedings of First International Conference on Knowledge Discovery and Data Mining, Montreal, QU. Morgan Kaufmann.
  • 47
    • 84951647161 scopus 로고    scopus 로고
    • Suzuki, J. (1993). A construction of Bayesian networks from databases based on an MDL scheme. In Proceedings of Ninth Conference on Uncertainty in Artificial Intelligence, Washington, DC, pages 266–273. Morgan Kaufmann.
  • 50
    • 84951647162 scopus 로고    scopus 로고
    • Verma, T. & Pearl, J. (1990). Equivalence and synthesis of causal models. In Proceedings of Sixth Conference on Uncertainty in Artificial Intelligence, Boston, MA, pages 220–227. Morgan Kaufmann.
  • 52
    • 84951647163 scopus 로고    scopus 로고
    • York, J. (1992). Bayesian methods for the analysis of misclassified or incomplete multivariate discrete data. PhD thesis, Department of Statistics, University of Washington, Seattle.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.