-
1
-
-
67849128643
-
-
(Photovoltaic) Hagfeldt, A.; Gratzel, M. Acc. Chem. Res. 2000, 5, 269-277. (Solar Thermal) Cuomo, J. J.; Ziegler, J. F.; Woodall, J. M. Appl. Phys. Lett. 1975, 26, 557-559. (Biofuel) St. Clair, S.; Hillier, J.; Smith, P. Biomass Bioenergy 2008, 32, 442-452. (Water splitting) Khan, S.; Al-Shahry, M.; Ingler, W. B. Science 2002, 297, 2243-2245.
-
(Photovoltaic) Hagfeldt, A.; Gratzel, M. Acc. Chem. Res. 2000, 5, 269-277. (Solar Thermal) Cuomo, J. J.; Ziegler, J. F.; Woodall, J. M. Appl. Phys. Lett. 1975, 26, 557-559. (Biofuel) St. Clair, S.; Hillier, J.; Smith, P. Biomass Bioenergy 2008, 32, 442-452. (Water splitting) Khan, S.; Al-Shahry, M.; Ingler, W. B. Science 2002, 297, 2243-2245.
-
-
-
-
3
-
-
34047155561
-
-
Gratzel, M. Phil. Trans. R. Soc. London, Ser. A 2007, 365, 993-1005. Burke, A. J. Power Sources 2000, 91, 37-50.
-
Gratzel, M. Phil. Trans. R. Soc. London, Ser. A 2007, 365, 993-1005. Burke, A. J. Power Sources 2000, 91, 37-50.
-
-
-
-
6
-
-
33847144184
-
-
(a) Denninghoff, D. J.; Starman, L. A.; Kladitis, P. E.; Perry, C. IEEE Circuits and Systems 48th Midwest Symposium 2005, 1, 367-370.
-
(2005)
IEEE Circuits and Systems 48th Midwest Symposium
, vol.1
, pp. 367-370
-
-
Denninghoff, D.J.1
Starman, L.A.2
Kladitis, P.E.3
Perry, C.4
-
8
-
-
41349087501
-
-
Rybalko, S.; Magome, N.; Yoshikawa, K. Phys. Rev. E. 2004, 70, 046301.
-
(2004)
Phys. Rev. E
, vol.70
, pp. 046301
-
-
Rybalko, S.1
Magome, N.2
Yoshikawa, K.3
-
9
-
-
0027642985
-
-
Brzoska, J. B.; Brochard-Wyart, F.; Rondelez, F. Langmuir 1993, 9, 2220-2224. Brochard, F. Langmuir 1989, 5, 432-438.
-
(a) Brzoska, J. B.; Brochard-Wyart, F.; Rondelez, F. Langmuir 1993, 9, 2220-2224. Brochard, F. Langmuir 1989, 5, 432-438.
-
-
-
-
10
-
-
33745739595
-
-
(b) Farahi, R. H.; Passian, A.; Zahrai, S.; Lereu, A. L.; Ferrell, T. L.; Thundat, T. Ultrami-croscopy 2006, 106, 815-821.
-
(2006)
Ultrami-croscopy
, vol.106
, pp. 815-821
-
-
Farahi, R.H.1
Passian, A.2
Zahrai, S.3
Lereu, A.L.4
Ferrell, T.L.5
Thundat, T.6
-
11
-
-
34547112527
-
-
Baroud, C. N.; de Saint Vincent, M. R.; Delville, J. P. Lab Chip 2007, 7, 1029-1033.
-
(2007)
Lab Chip
, vol.7
, pp. 1029-1033
-
-
Baroud, C.N.1
de Saint Vincent, M.R.2
Delville, J.P.3
-
13
-
-
33751301635
-
-
Nakata, S.; Kirisaka, J.; Arima, Y.; Ishii, T. J. Phys. Chem. B 2006, 110, 21131-21134.
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 21131-21134
-
-
Nakata, S.1
Kirisaka, J.2
Arima, Y.3
Ishii, T.4
-
15
-
-
13444252899
-
-
(a) Kline, T. R.; Paxton, W. F.; Mallouk, T. E.; Sen, A. Angew. Chem., Int. Ed. 2005, 44, 744-746.
-
(2005)
Angew. Chem., Int. Ed
, vol.44
, pp. 744-746
-
-
Kline, T.R.1
Paxton, W.F.2
Mallouk, T.E.3
Sen, A.4
-
16
-
-
0037084342
-
-
(b) Ismagilov, R. F.; Schwartz, A.; Bowden, N.; Whitesides, G. M. Angew. Chem., Int. Ed. 2002, 41, 652-654.
-
(2002)
Angew. Chem., Int. Ed
, vol.41
, pp. 652-654
-
-
Ismagilov, R.F.1
Schwartz, A.2
Bowden, N.3
Whitesides, G.M.4
-
17
-
-
67849126746
-
-
5% MWNT produces a similar response to VANT absorber.
-
5% MWNT produces a similar response to VANT absorber.
-
-
-
-
18
-
-
40349116864
-
-
Yang, Z. P.; Ci, L.; Bur, J. A.; Lin, S. Y.; Ajayan, P. M. Nano Lett. 2008, 8, 446-451.
-
(2008)
Nano Lett
, vol.8
, pp. 446-451
-
-
Yang, Z.P.1
Ci, L.2
Bur, J.A.3
Lin, S.Y.4
Ajayan, P.M.5
-
19
-
-
67849118725
-
-
Other advantages of the VANT are discussed in the SI
-
Other advantages of the VANT are discussed in the SI.
-
-
-
-
20
-
-
41549100592
-
-
Pastine, S. J.; Okawa, D.; Kessler, B.; Rolandi, M.; Llorente, M.; Zettl, A.; Fréchet, J. M. J. J. Am. Chem. Soc. 2008, 130, 4238-4239.
-
(2008)
J. Am. Chem. Soc
, vol.130
, pp. 4238-4239
-
-
Pastine, S.J.1
Okawa, D.2
Kessler, B.3
Rolandi, M.4
Llorente, M.5
Zettl, A.6
Fréchet, J.M.J.7
-
21
-
-
67849118724
-
-
In principle, any laser absorbed by the composite should be effective
-
In principle, any laser absorbed by the composite should be effective.
-
-
-
-
22
-
-
67849097280
-
-
Discussed in the SI
-
Discussed in the SI.
-
-
-
-
23
-
-
84869573100
-
-
Stable temperatures of 150 °C were observed under collimated laser illumination and measured with a thermocouple embedded in the PDMS.
-
Stable temperatures of 150 °C were observed under collimated laser illumination and measured with a thermocouple embedded in the PDMS.
-
-
-
-
24
-
-
0037059201
-
-
Gugliotti, M.; Baptista, M. S.; Politi, M. J. Langmuir 2002, 18, 9792-9798.
-
(2002)
Langmuir
, vol.18
, pp. 9792-9798
-
-
Gugliotti, M.1
Baptista, M.S.2
Politi, M.J.3
-
26
-
-
33847678889
-
-
(b) Chang, S. T; Paunov, V. N.; Petsev, D. N.; Velev, O. D. Nat. Mater. 2007, 6, 235-240.
-
(2007)
Nat. Mater
, vol.6
, pp. 235-240
-
-
Chang, S.T.1
Paunov, V.N.2
Petsev, D.N.3
Velev, O.D.4
-
27
-
-
67849084941
-
-
Forces were derived from location vs time, as discussed in the SI
-
Forces were derived from location vs time, as discussed in the SI.
-
-
-
-
28
-
-
67849114143
-
-
Luo, C.; Luo, H.; Li, X.; Liu, J. Micromech. Microeng. 2008, 18, 1-6.
-
(2008)
Micromech. Microeng
, vol.18
, pp. 1-6
-
-
Luo, C.1
Luo, H.2
Li, X.3
Liu, J.4
-
29
-
-
61849101948
-
-
Discussion of the necessity for controllably moving small objects on a variety of noncaustic liquids: Wang, J. ACS Nano 2009, 3, 4-9
-
Discussion of the necessity for controllably moving small objects on a variety of noncaustic liquids: Wang, J. ACS Nano 2009, 3, 4-9.
-
-
-
-
30
-
-
67849114146
-
-
Composites larger than the spot size of the laser were used to allow absorption to be focused solely on the back face. This resulted in larger forces being produced compared to the previous examples, where the spot size was larger than the back face of the composites
-
Composites larger than the spot size of the laser were used to allow absorption to be focused solely on the back face. This resulted in larger forces being produced compared to the previous examples, where the spot size was larger than the back face of the composites.
-
-
-
|