-
1
-
-
33750738734
-
Co-training and expansion: Towards bridging theory and practice
-
L.K. Sawl, Y. Weiss, L. Bottou Eds, MIT Press, Cambridge, MA
-
M.-F. Balcan, A. Blum, K. Yang, Co-training and expansion: towards bridging theory and practice, in: L.K. Sawl, Y. Weiss, L. Bottou (Eds.), Advances in Neural Information Processing Systems, vol. 17, MIT Press, Cambridge, MA.
-
Advances in Neural Information Processing Systems
, vol.17
-
-
Balcan, M.-F.1
Blum, A.2
Yang, K.3
-
2
-
-
0030150519
-
Partially supervised clustering for image segmentation
-
Bensaid A.M. Partially supervised clustering for image segmentation. Pattern Recognition 29 (1996) 859-871
-
(1996)
Pattern Recognition
, vol.29
, pp. 859-871
-
-
Bensaid, A.M.1
-
5
-
-
33646589004
-
Enhancement of fuzzy clustering by mechanisms of partial supervision
-
Bouchachiaa A., and Pedryczb W. Enhancement of fuzzy clustering by mechanisms of partial supervision. Fuzzy Sets and Systems 157 (2006) 1733-1759
-
(2006)
Fuzzy Sets and Systems
, vol.157
, pp. 1733-1759
-
-
Bouchachiaa, A.1
Pedryczb, W.2
-
6
-
-
0036825821
-
Kernel methods: a survey of current techniques
-
Campbell C. Kernel methods: a survey of current techniques. Neurocomputing 48 (2002) 63-84
-
(2002)
Neurocomputing
, vol.48
, pp. 63-84
-
-
Campbell, C.1
-
8
-
-
38849204864
-
Optimizing the data-dependent kernel under a unified kernel optimization framework
-
Chen B., Liu H.-w., and Bao Z. Optimizing the data-dependent kernel under a unified kernel optimization framework. Pattern Recognition 41 (2008) 2107-2119
-
(2008)
Pattern Recognition
, vol.41
, pp. 2107-2119
-
-
Chen, B.1
Liu, H.-w.2
Bao, Z.3
-
10
-
-
0036565280
-
Mercer kernel-based clustering in feature space
-
Girolami M. Mercer kernel-based clustering in feature space. IEEE Transactions on Neural Networks 13 3 (2002) 780-784
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, Issue.3
, pp. 780-784
-
-
Girolami, M.1
-
11
-
-
33745400518
-
Feature-based approach to semi-supervised similarity learning
-
Gosselin P.H., and Cord M. Feature-based approach to semi-supervised similarity learning. Pattern Recognition 39 (2006) 1839-1851
-
(2006)
Pattern Recognition
, vol.39
, pp. 1839-1851
-
-
Gosselin, P.H.1
Cord, M.2
-
12
-
-
34250707340
-
Learning a kernel function for classification with small training samples
-
Pittsburgh, PA
-
T. Hertz, A.B. Hillel, D. Weinshall, Learning a kernel function for classification with small training samples, in: Proceedings of the 23rd International Conference. on Machine Learning, Pittsburgh, PA, 2006.
-
(2006)
Proceedings of the 23rd International Conference. on Machine Learning
-
-
Hertz, T.1
Hillel, A.B.2
Weinshall, D.3
-
13
-
-
0001938951
-
Transductive inference for text classification using support vector machines
-
Morgan Kaufmann, San Francisco, CA
-
T. Joachims, Transductive inference for text classification using support vector machines, in: 16th International Conference on Machine Learning, Morgan Kaufmann, San Francisco, CA, 1999, pp. 200-209.
-
(1999)
16th International Conference on Machine Learning
, pp. 200-209
-
-
Joachims, T.1
-
14
-
-
10644261327
-
Evaluation of the performance of clustering algorithm in kernel-induced feature space
-
Kim D.-W., Lee K.-Y., Lee D., and Lee K.-H. Evaluation of the performance of clustering algorithm in kernel-induced feature space. Pattern Recognition 38 (2005) 607-611
-
(2005)
Pattern Recognition
, vol.38
, pp. 607-611
-
-
Kim, D.-W.1
Lee, K.-Y.2
Lee, D.3
Lee, K.-H.4
-
16
-
-
0001095092
-
On the alleviation of local minima in backpropagation
-
Magoulas G.D., Vrahatis M.N., and Androulakis G.S. On the alleviation of local minima in backpropagation. Nonlinear Analysis: Theory, Methods and Application 30 7 (1997) 4545-4550
-
(1997)
Nonlinear Analysis: Theory, Methods and Application
, vol.30
, Issue.7
, pp. 4545-4550
-
-
Magoulas, G.D.1
Vrahatis, M.N.2
Androulakis, G.S.3
-
17
-
-
0033886806
-
Text classification from labeled and unlabeled documents using EM
-
Nigam K., McCallum A.K., Trun S., and Mitchell T. Text classification from labeled and unlabeled documents using EM. Machine Learning 39 2/3 (2000) 103-134
-
(2000)
Machine Learning
, vol.39
, Issue.2-3
, pp. 103-134
-
-
Nigam, K.1
McCallum, A.K.2
Trun, S.3
Mitchell, T.4
-
18
-
-
44649132677
-
-
doi:10.1016/j.patcog.2008.01.001
-
Y.-Q. Song, F.-P. Nie, C.-S. Zhang, S.-M. Xiang, A unified framework for semi-supervised dimensionality reduction, Pattern Recognition, doi:10.1016/j.patcog.2008.01.001.
-
A unified framework for semi-supervised dimensionality reduction, Pattern Recognition
-
-
Song, Y.-Q.1
Nie, F.-P.2
Zhang, C.-S.3
Xiang, S.-M.4
-
19
-
-
84911153095
-
Learning kernel parameters by using class separability measure
-
Canada
-
L. Wang, K.L. Chan, Learning kernel parameters by using class separability measure, in: NIPS'02 Workshop on Kernel Machines, Canada, 2002.
-
(2002)
NIPS'02 Workshop on Kernel Machines
-
-
Wang, L.1
Chan, K.L.2
-
21
-
-
27344455216
-
Learning the kernel parameters in kernel minimum distance
-
Zhang D.-q., Chen S.-c., and Zhou Z.-h. Learning the kernel parameters in kernel minimum distance. Pattern Recognition 39 1 (2006) 133-135
-
(2006)
Pattern Recognition
, vol.39
, Issue.1
, pp. 133-135
-
-
Zhang, D.-q.1
Chen, S.-c.2
Zhou, Z.-h.3
|