-
1
-
-
33646538611
-
-
M. Amini, P. Gallinari, Semi-supervised logistic regression, in: Proc. 15th European Conf. on Artificial Intelligence, 2002, pp. 390-394.
-
-
-
-
2
-
-
33646586215
-
-
S. Basu, A. Banerjee, R. Mooney, Semi-supervised clustering by seeding, in: Proc. Internat. Conf. on Machine Learning, 2002, pp. 19-26.
-
-
-
-
3
-
-
33646549440
-
-
A. Bensaid, J. Bezdek, Partial supervision based on point-prototype clustering algorithms, in: Proc. 4th European Cong. on Intelligent Techniques and Soft Computing, 1996, pp. 1402-1406.
-
-
-
-
5
-
-
0022185002
-
An application of the c-varieties clustering algorithms to polygonal curve fitting
-
Bezdek J., and Anderson I. An application of the c-varieties clustering algorithms to polygonal curve fitting. IEEE Trans. Systems Man and Cybern. SMC 15 5 (1985) 637-641
-
(1985)
IEEE Trans. Systems Man and Cybern. SMC
, vol.15
, Issue.5
, pp. 637-641
-
-
Bezdek, J.1
Anderson, I.2
-
6
-
-
0026927872
-
-
J. Bezdek, R. Hathaway, Numerical convergence and interpretation of the fuzzy c-shells clustering algorithm, IEEE Trans. Neural Networks (3) (1992) 787-793.
-
-
-
-
8
-
-
0031620208
-
-
A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Proc. 11th Ann. Conf. Computational Learning Theory, 1998, pp. 92-100.
-
-
-
-
9
-
-
33646546860
-
-
A. Bouchachia, Incremental rule learning using incremental clustering, in: Proc. 10th Internat. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems, 2004, pp. 2085-2092.
-
-
-
-
10
-
-
7044251664
-
-
A. Bouchachia, W. Pedrycz, A semi-supervised clustering algorithm for data exploration, in: Proc. Internat. Fuzzy Systems Association World Congress IFSA'2003, 2003, pp. 328-337.
-
-
-
-
11
-
-
84972811713
-
-
R. Davé, K. Bhaswan, Fuzzy c-shells clustering and application to circle detection in digital images, Internat. J. General System (16) (1990) 343-355.
-
-
-
-
12
-
-
0033338339
-
-
A. Demiriz, K. Bennett, M. Embrechts, Semi-supervised clustering using genetic algorithm, Intell. Eng. Systems Through ANN 9 (1999), 809-814.
-
-
-
-
14
-
-
0030142297
-
-
H. Frigui, R. Krishnapuram, A comparison of fuzzy shell-clustering methods for the detection of ellipses, IEEE Trans. Fuzzy Systems (4) (1996) 193-199.
-
-
-
-
16
-
-
0029342485
-
Fuzzy clustering of elliptic ring-shaped clusters
-
Gath I., and Hoory D. Fuzzy clustering of elliptic ring-shaped clusters. Pattern Recognition Lett. 16 7 (1995) 727-741
-
(1995)
Pattern Recognition Lett.
, vol.16
, Issue.7
, pp. 727-741
-
-
Gath, I.1
Hoory, D.2
-
17
-
-
33646581525
-
-
R. Ghani, Combining labeled and unlabeled data for multi-class text categorization, in: Proc. 19th Internat. Conf. Machine Learning, 2002.
-
-
-
-
18
-
-
0018057468
-
-
D. Gustafson, W. Kessel, Fuzzy clustering with a fuzzy covariance matrix, in: Proc. IEEE Conf. Decision and Control, 1979, pp. 761-766.
-
-
-
-
19
-
-
0031268101
-
Fuzzy shell clustering algorithms in image processing: Fuzzy c-rectangular and 2-rectangular shells
-
Hoeppner F. Fuzzy shell clustering algorithms in image processing: Fuzzy c-rectangular and 2-rectangular shells. IEEE Trans. Fuzzy Systems 5 4 (1997) 599-613
-
(1997)
IEEE Trans. Fuzzy Systems
, vol.5
, Issue.4
, pp. 599-613
-
-
Hoeppner, F.1
-
20
-
-
33646583988
-
-
R. Klinkenberg, Using labeled and unlabeled data to learn drifting concepts, in: Proc. Workshop on Learning from Temporal and Spatial Data (joined with IJCAI), 2001, pp. 16-24.
-
-
-
-
21
-
-
0029246295
-
Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation: Part 1 & 2
-
Krishnapuram R., Frigui H., and Nasraoui O. Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation: Part 1 & 2. IEEE Trans. Fuzzy Systems 3 1 (1995) 44-60
-
(1995)
IEEE Trans. Fuzzy Systems
, vol.3
, Issue.1
, pp. 44-60
-
-
Krishnapuram, R.1
Frigui, H.2
Nasraoui, O.3
-
23
-
-
0033886806
-
Text classification from labeled and unlabeled documents using EM
-
Nigam K., McCallum A., Thrun S., and Mitchell T. Text classification from labeled and unlabeled documents using EM. Mach. Learn. 39 2/3 (2000) 103-134
-
(2000)
Mach. Learn.
, vol.39
, Issue.2-3
, pp. 103-134
-
-
Nigam, K.1
McCallum, A.2
Thrun, S.3
Mitchell, T.4
-
25
-
-
0030385717
-
-
T. Runkler, R. Palm, Identification of nonlinear systems using regular fuzzy c-elliptotype clustering, in: Proc. Fifth IEEE Conf. Fuzzy Systems, 1996, pp. 1026-1030.
-
-
-
-
27
-
-
0003798627
-
-
MIT Press, Cambridge, MA
-
Schölkopf B., Burges C., and Smola A. Advances in Kernel Methods-Support Vector Learning (1999), MIT Press, Cambridge, MA
-
(1999)
Advances in Kernel Methods-Support Vector Learning
-
-
Schölkopf, B.1
Burges, C.2
Smola, A.3
-
28
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens J., and Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 9 3 (1999) 293-300
-
(1999)
Neural Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.1
Vandewalle, J.2
-
30
-
-
2142687208
-
A unified framework for model-based clustering
-
Zhong S., and Ghosh J. A unified framework for model-based clustering. J. Mach. Learn. Res. 4 (2003) 1001-1037
-
(2003)
J. Mach. Learn. Res.
, vol.4
, pp. 1001-1037
-
-
Zhong, S.1
Ghosh, J.2
|