메뉴 건너뛰기




Volumn 8, Issue 7, 2009, Pages 1061-1071

Saccharomyces cerevisiae Rbg1 protein and its binding partner gir2 interact on polyribosomes with Gcn1

Author keywords

[No Author keywords available]

Indexed keywords

AMINO ACID; CARRIER PROTEIN; ELONGATION FACTOR; GCN1 PROTEIN, S CEREVISIAE; GIR2 PROTEIN, S CEREVISIAE; GUANINE NUCLEOTIDE BINDING PROTEIN; RBG1 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 67650467659     PISSN: 15359778     EISSN: None     Source Type: Journal    
DOI: 10.1128/EC.00356-08     Document Type: Article
Times cited : (28)

References (71)
  • 1
    • 19444386382 scopus 로고    scopus 로고
    • Gir2 is an intrinsically unstructured protein that is present in Saccharomyces cerevisiae as a group of heterogeneously electrophoretic migrating forms
    • Alves, V. S., and B. A. Castilho. 2005. Gir2 is an intrinsically unstructured protein that is present in Saccharomyces cerevisiae as a group of heterogeneously electrophoretic migrating forms. Biochem. Biophys. Res. Commun. 332:450-455.
    • (2005) Biochem. Biophys. Res. Commun , vol.332 , pp. 450-455
    • Alves, V.S.1    Castilho, B.A.2
  • 2
    • 0346095160 scopus 로고    scopus 로고
    • Biophysical characterization of Gir2, a highly acidic protein of Saccharomyces cerevisiae with anomalous electrophoretic behavior
    • Alves, V. S., D. C. Pimenta, E. Sattlegger, and B. A. Castilho. 2004. Biophysical characterization of Gir2, a highly acidic protein of Saccharomyces cerevisiae with anomalous electrophoretic behavior. Biochem. Biophys. Res. Commun. 314:229-234.
    • (2004) Biochem. Biophys. Res. Commun , vol.314 , pp. 229-234
    • Alves, V.S.1    Pimenta, D.C.2    Sattlegger, E.3    Castilho, B.A.4
  • 3
    • 33750479525 scopus 로고    scopus 로고
    • Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism
    • Battesti, A., and E. Bouveret. 2006. Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. Mol. Microbiol. 62:1048-1063.
    • (2006) Mol. Microbiol , vol.62 , pp. 1048-1063
    • Battesti, A.1    Bouveret, E.2
  • 5
    • 0030762073 scopus 로고    scopus 로고
    • SOI1 encodes a novel, conserved protein that promotes TGN-endosomal cycling of Kex2p and other membrane proteins by modulating the function of two TGN localization signals
    • Brickner, J. H., and R. S. Fuller. 1997. SOI1 encodes a novel, conserved protein that promotes TGN-endosomal cycling of Kex2p and other membrane proteins by modulating the function of two TGN localization signals. J. Cell Biol. 139:23-36.
    • (1997) J. Cell Biol , vol.139 , pp. 23-36
    • Brickner, J.H.1    Fuller, R.S.2
  • 6
    • 0038352105 scopus 로고    scopus 로고
    • Function of the universally conserved bacterial GTPases
    • Caldon, C. E., and P. E. March. 2003. Function of the universally conserved bacterial GTPases. Curr. Opin. Microbiol. 6:135-139.
    • (2003) Curr. Opin. Microbiol , vol.6 , pp. 135-139
    • Caldon, C.E.1    March, P.E.2
  • 8
    • 12844288568 scopus 로고    scopus 로고
    • The yeast GTPase Mtg2p is required for mitochondrial translation and partially suppresses an rRNA methyltransferase mutant, mrm2
    • Datta, K., J. L. Fuentes, and J. R. Maddock. 2005. The yeast GTPase Mtg2p is required for mitochondrial translation and partially suppresses an rRNA methyltransferase mutant, mrm2. Mol. Biol. Cell 16:954-963.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 954-963
    • Datta, K.1    Fuentes, J.L.2    Maddock, J.R.3
  • 9
    • 0026556814 scopus 로고
    • Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast
    • Dever, T. E., L. Feng, R. C. Wek, A. M. Cigan, T. F. Donahue, and A. G. Hinnebusch. 1992. Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68:585-596.
    • (1992) Cell , vol.68 , pp. 585-596
    • Dever, T.E.1    Feng, L.2    Wek, R.C.3    Cigan, A.M.4    Donahue, T.F.5    Hinnebusch, A.G.6
  • 10
    • 33646537802 scopus 로고    scopus 로고
    • Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes
    • Fleischer, T. C., C. M. Weaver, K. J. McAfee, J. L. Jennings, and A. J. Link. 2006. Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes. Genes Dev. 20: 1294-1307.
    • (2006) Genes Dev , vol.20 , pp. 1294-1307
    • Fleischer, T.C.1    Weaver, C.M.2    McAfee, K.J.3    Jennings, J.L.4    Link, A.J.5
  • 11
    • 0025869164 scopus 로고
    • GCD2, a translational repressor of the GCN4 gene, has a general function in the initiation of protein synthesis in Saccharomyces cerevisiae
    • Foiani, M., A. M. Cigan, C. J. Paddon, S. Harashima, and A. G. Hinnebusch. 1991. GCD2, a translational repressor of the GCN4 gene, has a general function in the initiation of protein synthesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:3203-3216.
    • (1991) Mol. Cell. Biol , vol.11 , pp. 3203-3216
    • Foiani, M.1    Cigan, A.M.2    Paddon, C.J.3    Harashima, S.4    Hinnebusch, A.G.5
  • 12
    • 34250302662 scopus 로고    scopus 로고
    • In vivo functional characterization of the Saccharomyces cerevisiae 60S biogenesis GTPase Nog1
    • Fuentes, J. L., K. Datta, S. M. Sullivan, A. Walker, and J. R. Maddock. 2007. In vivo functional characterization of the Saccharomyces cerevisiae 60S biogenesis GTPase Nog1. Mol. Genet. Genomics 278:105-123.
    • (2007) Mol. Genet. Genomics , vol.278 , pp. 105-123
    • Fuentes, J.L.1    Datta, K.2    Sullivan, S.M.3    Walker, A.4    Maddock, J.R.5
  • 13
    • 0034678890 scopus 로고    scopus 로고
    • Association of GCN1-GCN20 regulatory complex with the N terminus of eIF2α kinase GCN2 is required for GCN2 activation
    • Garcia-Barrio, M., J. Dong, S. Ufano, and A. G. Hinnebusch. 2000. Association of GCN1-GCN20 regulatory complex with the N terminus of eIF2α kinase GCN2 is required for GCN2 activation. EMBO J. 19:1887-1899.
    • (2000) EMBO J , vol.19 , pp. 1887-1899
    • Garcia-Barrio, M.1    Dong, J.2    Ufano, S.3    Hinnebusch, A.G.4
  • 15
    • 0037050026 scopus 로고    scopus 로고
    • Gavin, A. C., M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, J. M. Rick, A. M. Michon, C. M. Cruciat, M. Remor, C. Hofert, M. Schelder, M. Brajenovic, H. Ruffner, A. Merino, K. Klein, M. Hudak, D. Dickson, T. Rudi, V. Gnau, A. Bauch, S. Bastuck, B. Huhse, C. Leutwein, M. A. Heurtier, R. R. Copley, A. Edelmann, E. Querfurth, V. Rybin, G. Drewes, M. Raida, T. Bouwmeester, P. Bork, B. Seraphin, B. Kuster, G. Neubauer, and G. Superti-Furga. 2002. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141-147.
    • Gavin, A. C., M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, J. M. Rick, A. M. Michon, C. M. Cruciat, M. Remor, C. Hofert, M. Schelder, M. Brajenovic, H. Ruffner, A. Merino, K. Klein, M. Hudak, D. Dickson, T. Rudi, V. Gnau, A. Bauch, S. Bastuck, B. Huhse, C. Leutwein, M. A. Heurtier, R. R. Copley, A. Edelmann, E. Querfurth, V. Rybin, G. Drewes, M. Raida, T. Bouwmeester, P. Bork, B. Seraphin, B. Kuster, G. Neubauer, and G. Superti-Furga. 2002. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141-147.
  • 16
    • 28844501851 scopus 로고    scopus 로고
    • Oxidant-specific folding of Yap1p regulates both transcriptional activation and nuclear localization
    • Gulshan, K., S. A. Rovinsky, S. T. Coleman, and W. S. Moye-Rowley. 2005. Oxidant-specific folding of Yap1p regulates both transcriptional activation and nuclear localization. J. Biol. Chem. 280:40524-40533.
    • (2005) J. Biol. Chem , vol.280 , pp. 40524-40533
    • Gulshan, K.1    Rovinsky, S.A.2    Coleman, S.T.3    Moye-Rowley, W.S.4
  • 17
    • 0027496935 scopus 로고
    • The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclindependent kinases
    • Harper, J. W., G. R. Adami, N. Wei, K. Keyomarsi, and S. J. Elledge. 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclindependent kinases. Cell 75:805-816.
    • (1993) Cell , vol.75 , pp. 805-816
    • Harper, J.W.1    Adami, G.R.2    Wei, N.3    Keyomarsi, K.4    Elledge, S.J.5
  • 18
    • 0007825206 scopus 로고
    • Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes
    • Haseltine, W. A., and R. Block. 1973. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc. Natl. Acad. Sci. USA 70:1564-1568.
    • (1973) Proc. Natl. Acad. Sci. USA , vol.70 , pp. 1564-1568
    • Haseltine, W.A.1    Block, R.2
  • 19
    • 0017749190 scopus 로고
    • In vitro degradation of guanosine tetraphosphate (ppGpp) by an enzyme associated with the ribosomal fraction from Escherichia coli
    • Heinemeyer, E. A., and D. Richter. 1977. In vitro degradation of guanosine tetraphosphate (ppGpp) by an enzyme associated with the ribosomal fraction from Escherichia coli. FEBS Lett. 84:357-361.
    • (1977) FEBS Lett , vol.84 , pp. 357-361
    • Heinemeyer, E.A.1    Richter, D.2
  • 20
    • 0025947362 scopus 로고
    • Escherichia coli ppGpp synthetase II activity requires spoT
    • Hernandez, V. J., and H. Bremer. 1991. Escherichia coli ppGpp synthetase II activity requires spoT. J. Biol. Chem. 266:5991-5999.
    • (1991) J. Biol. Chem , vol.266 , pp. 5991-5999
    • Hernandez, V.J.1    Bremer, H.2
  • 21
    • 27144510561 scopus 로고    scopus 로고
    • Translational regulation of GCN4 and the general amino acid control of yeast
    • Hinnebusch, A. G. 2005. Translational regulation of GCN4 and the general amino acid control of yeast. Annu. Rev. Microbiol. 59:407-450.
    • (2005) Annu. Rev. Microbiol , vol.59 , pp. 407-450
    • Hinnebusch, A.G.1
  • 22
    • 0020572457 scopus 로고
    • Positive regulation in the general amino acid control of Saccharomyces cerevisiae
    • Hinnebusch, A. G., and G. R. Fink. 1983. Positive regulation in the general amino acid control of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 80:5374-5378.
    • (1983) Proc. Natl. Acad. Sci. USA , vol.80 , pp. 5374-5378
    • Hinnebusch, A.G.1    Fink, G.R.2
  • 24
    • 14244263018 scopus 로고    scopus 로고
    • Identification of DRG family regulatory proteins (DFRPs): Specific regulation of DRG1 and DRG2
    • Ishikawa, K., S. Azuma, S. Ikawa, K. Semba, and J. Inoue. 2005. Identification of DRG family regulatory proteins (DFRPs): specific regulation of DRG1 and DRG2. Genes Cells 10:139-150.
    • (2005) Genes Cells , vol.10 , pp. 139-150
    • Ishikawa, K.1    Azuma, S.2    Ikawa, S.3    Semba, K.4    Inoue, J.5
  • 26
    • 0033974688 scopus 로고    scopus 로고
    • Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins
    • Ito, T., K. Tashiro, S. Muta, R. Ozawa, T. Chiba, M. Nishizawa, K. Yamamoto, S. Kuhara, and Y. Sakaki. 2000. Toward a protein-protein interaction map of the budding yeast: a comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc. Natl. Acad. Sci. USA 97:1143-1147.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 1143-1147
    • Ito, T.1    Tashiro, K.2    Muta, S.3    Ozawa, R.4    Chiba, T.5    Nishizawa, M.6    Yamamoto, K.7    Kuhara, S.8    Sakaki, Y.9
  • 27
    • 0030455820 scopus 로고    scopus 로고
    • Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast
    • James, P., J. Halladay, and E. A. Craig. 1996. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425-1436.
    • (1996) Genetics , vol.144 , pp. 1425-1436
    • James, P.1    Halladay, J.2    Craig, E.A.3
  • 28
    • 0042858143 scopus 로고    scopus 로고
    • The NOG1 GTP-binding protein is required for biogenesis of the 60 S ribosomal subunit
    • Jensen, B. C., Q. Wang, C. T. Kifer, and M. Parsons. 2003. The NOG1 GTP-binding protein is required for biogenesis of the 60 S ribosomal subunit. J. Biol. Chem. 278:32204-32211.
    • (2003) J. Biol. Chem , vol.278 , pp. 32204-32211
    • Jensen, B.C.1    Wang, Q.2    Kifer, C.T.3    Parsons, M.4
  • 30
    • 34548513288 scopus 로고    scopus 로고
    • G-protein control of the ribosome-associated stress response protein SpoT
    • Jiang, M., S. M. Sullivan, P. K. Wout, and J. R. Maddock. 2007. G-protein control of the ribosome-associated stress response protein SpoT. J. Bacteriol. 189:6140-6147.
    • (2007) J. Bacteriol , vol.189 , pp. 6140-6147
    • Jiang, M.1    Sullivan, S.M.2    Wout, P.K.3    Maddock, J.R.4
  • 31
    • 0038316568 scopus 로고    scopus 로고
    • The putative GTPases Nog1p and Lsg1p are required for 60S ribosomal subunit biogenesis and are localized to the nucleus and cytoplasm, respectively
    • Kallstrom, G., J. Hedges, and A. Johnson. 2003. The putative GTPases Nog1p and Lsg1p are required for 60S ribosomal subunit biogenesis and are localized to the nucleus and cytoplasm, respectively. Mol. Cell. Biol. 23: 4344-4355.
    • (2003) Mol. Cell. Biol , vol.23 , pp. 4344-4355
    • Kallstrom, G.1    Hedges, J.2    Johnson, A.3
  • 33
    • 33645453254 scopus 로고    scopus 로고
    • Krogan, N. J., G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko, J. Li, S. Pu, N. Datta, A. P. Tikuisis, T. Punna, J. M. Peregrin-Alvarez, M. Shales, X. Zhang, M. Davey, M. D. Robinson, A. Paccanaro, J. E. Bray, A. Sheung, B. Beattie, D. P. Richards, V. Canadien, A. Lalev, F. Mena, P. Wong, A. Starostine, M. M. Canete, J. Vlasblom, S. Wu, C. Orsi, S. R. Collins, S. Chandran, R. Haw, J. J. Rilstone, K. Gandi, N. J. Thompson, G. Musso, P. St Onge, S. Ghanny, M. H. Lam, G. Butland, A. M. Altaf-Ul, S. Kanaya, A. Shilatifard, E. O'Shea, J. S. Weissman, C. J. Ingles, T. R. Hughes, J. Parkinson, M. Gerstein, S. J. Wodak, A. Emili, and J. F. Greenblatt. 2006. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637-643.
    • Krogan, N. J., G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko, J. Li, S. Pu, N. Datta, A. P. Tikuisis, T. Punna, J. M. Peregrin-Alvarez, M. Shales, X. Zhang, M. Davey, M. D. Robinson, A. Paccanaro, J. E. Bray, A. Sheung, B. Beattie, D. P. Richards, V. Canadien, A. Lalev, F. Mena, P. Wong, A. Starostine, M. M. Canete, J. Vlasblom, S. Wu, C. Orsi, S. R. Collins, S. Chandran, R. Haw, J. J. Rilstone, K. Gandi, N. J. Thompson, G. Musso, P. St Onge, S. Ghanny, M. H. Lam, G. Butland, A. M. Altaf-Ul, S. Kanaya, A. Shilatifard, E. O'Shea, J. S. Weissman, C. J. Ingles, T. R. Hughes, J. Parkinson, M. Gerstein, S. J. Wodak, A. Emili, and J. F. Greenblatt. 2006. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637-643.
  • 34
    • 0034617211 scopus 로고    scopus 로고
    • GI domain-mediated association of the eukaryotic initiation factor 2α kinase GCN2 with its activator GCN1 is required for general amino acid control in budding yeast
    • Kubota, H., Y. Sakaki, and T. Ito. 2000. GI domain-mediated association of the eukaryotic initiation factor 2α kinase GCN2 with its activator GCN1 is required for general amino acid control in budding yeast. J. Biol. Chem. 275:20243-20246.
    • (2000) J. Biol. Chem , vol.275 , pp. 20243-20246
    • Kubota, H.1    Sakaki, Y.2    Ito, T.3
  • 35
    • 0028057226 scopus 로고
    • YAP1-dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides
    • Kuge, S., and N. Jones. 1994. YAP1-dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J. 13:655-664.
    • (1994) EMBO J , vol.13 , pp. 655-664
    • Kuge, S.1    Jones, N.2
  • 36
    • 0030942294 scopus 로고    scopus 로고
    • Regulation of yAP-1 nuclear localization in response to oxidative stress
    • Kuge, S., N. Jones, and A. Nomoto. 1997. Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J. 16:1710-1720.
    • (1997) EMBO J , vol.16 , pp. 1710-1720
    • Kuge, S.1    Jones, N.2    Nomoto, A.3
  • 37
    • 35649005949 scopus 로고    scopus 로고
    • Restricting conformational flexibility of the switch II region creates a dominant-inhibitory phenotype in Obg GTPase Nog1
    • Lapik, Y. R., J. M. Misra, L. F. Lau, and D. G. Pestov. 2007. Restricting conformational flexibility of the switch II region creates a dominant-inhibitory phenotype in Obg GTPase Nog1. Mol. Cell. Biol. 27:7735-7744.
    • (2007) Mol. Cell. Biol , vol.27 , pp. 7735-7744
    • Lapik, Y.R.1    Misra, J.M.2    Lau, L.F.3    Pestov, D.G.4
  • 38
    • 0036295212 scopus 로고    scopus 로고
    • Classification and evolution of P-loop GTPases and related ATPases
    • Leipe, D. D., Y. I. Wolf, E. V. Koonin, and L. Aravind. 2002. Classification and evolution of P-loop GTPases and related ATPases. J. Mol. Biol. 317: 41-72.
    • (2002) J. Mol. Biol , vol.317 , pp. 41-72
    • Leipe, D.D.1    Wolf, Y.I.2    Koonin, E.V.3    Aravind, L.4
  • 39
    • 0346024113 scopus 로고    scopus 로고
    • The Caulobacter crescentus CgtAC protein cosediments with the free 50S ribosomal subunit
    • Lin, B., D. A. Thayer, and J. R. Maddock. 2004. The Caulobacter crescentus CgtAC protein cosediments with the free 50S ribosomal subunit. J. Bacteriol. 186:481-489.
    • (2004) J. Bacteriol , vol.186 , pp. 481-489
    • Lin, B.1    Thayer, D.A.2    Maddock, J.R.3
  • 40
    • 0031820288 scopus 로고    scopus 로고
    • Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae
    • Longtine, M. S., A. McKenzie III, D. J. Demarini, N. G. Shah, A. Wach, A. Brachat, P. Philippsen, and J. R. Pringle. 1998. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953-961.
    • (1998) Yeast , vol.14 , pp. 953-961
    • Longtine, M.S.1    McKenzie III, A.2    Demarini, D.J.3    Shah, N.G.4    Wach, A.5    Brachat, A.6    Philippsen, P.7    Pringle, J.R.8
  • 41
    • 0027175499 scopus 로고
    • GCN1, a translational activator of GCN4 in Saccharomyces cerevisiae, is required for phosphorylation of eukaryotic translation initiation factor 2 by protein kinase GCN2
    • Marton, M. J., D. Crouch, and A. G. Hinnebusch. 1993. GCN1, a translational activator of GCN4 in Saccharomyces cerevisiae, is required for phosphorylation of eukaryotic translation initiation factor 2 by protein kinase GCN2. Mol. Cell. Biol. 13:3541-3556.
    • (1993) Mol. Cell. Biol , vol.13 , pp. 3541-3556
    • Marton, M.J.1    Crouch, D.2    Hinnebusch, A.G.3
  • 42
    • 1842287951 scopus 로고    scopus 로고
    • Evidence that GCN1 and GCN20, translational regulators of GCN4, function on elongating ribosomes in activation of eIF2α kinase GCN2
    • Marton, M. J., C. R. Vazquez de Aldana, H. Qiu, K. Chakraburtty, and A. G. Hinnebusch. 1997. Evidence that GCN1 and GCN20, translational regulators of GCN4, function on elongating ribosomes in activation of eIF2α kinase GCN2. Mol. Cell. Biol. 17:4474-4489.
    • (1997) Mol. Cell. Biol , vol.17 , pp. 4474-4489
    • Marton, M.J.1    Vazquez de Aldana, C.R.2    Qiu, H.3    Chakraburtty, K.4    Hinnebusch, A.G.5
  • 43
    • 0026320245 scopus 로고
    • Association of RAP1 binding sites with stringent control of ribosomal protein gene transcription in Saccharomyces cerevisiae
    • Moehle, C. M., and A. G. Hinnebusch. 1991. Association of RAP1 binding sites with stringent control of ribosomal protein gene transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:2723-2735.
    • (1991) Mol. Cell. Biol , vol.11 , pp. 2723-2735
    • Moehle, C.M.1    Hinnebusch, A.G.2
  • 44
    • 0022512237 scopus 로고
    • Multiple upstream AUG codons mediate translational control of GCN4
    • Mueller, P. P., and A. G. Hinnebusch. 1986. Multiple upstream AUG codons mediate translational control of GCN4. Cell 45:201-207.
    • (1986) Cell , vol.45 , pp. 201-207
    • Mueller, P.P.1    Hinnebusch, A.G.2
  • 45
    • 0028586017 scopus 로고
    • Regulatable promoters of Saccharomyces cerevisiae: Comparison of transcriptional activity and their use for heterologous expression
    • Mumberg, D., R. Muller, and M. Funk. 1994. Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res. 22:5767-5768.
    • (1994) Nucleic Acids Res , vol.22 , pp. 5767-5768
    • Mumberg, D.1    Muller, R.2    Funk, M.3
  • 46
    • 2442563845 scopus 로고
    • Localization of the stringent protein of Escherichia coli on the 50S ribosomal subunit
    • Ramagopal, S., and B. D. Davis. 1974. Localization of the stringent protein of Escherichia coli on the 50S ribosomal subunit. Proc. Natl. Acad. Sci. USA 71:820-824.
    • (1974) Proc. Natl. Acad. Sci. USA , vol.71 , pp. 820-824
    • Ramagopal, S.1    Davis, B.D.2
  • 47
    • 0025801817 scopus 로고
    • Ribosome association of GCN2 protein kinase, a translational activator of the GCN4 gene of Saccharomyces cerevisiae
    • Ramirez, M., R. C. Wek, and A. G. Hinnebusch. 1991. Ribosome association of GCN2 protein kinase, a translational activator of the GCN4 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 11:3027-3036.
    • (1991) Mol. Cell. Biol , vol.11 , pp. 3027-3036
    • Ramirez, M.1    Wek, R.C.2    Hinnebusch, A.G.3
  • 48
    • 34248328786 scopus 로고    scopus 로고
    • Regulation of the stringent response is the essential function of the conserved bacterial G protein CgtA in Vibrio cholerae
    • Raskin, D. M., N. Judson, and J. J. Mekalanos. 2007. Regulation of the stringent response is the essential function of the conserved bacterial G protein CgtA in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 104:4636-4641.
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 4636-4641
    • Raskin, D.M.1    Judson, N.2    Mekalanos, J.J.3
  • 49
    • 0034695924 scopus 로고    scopus 로고
    • The yeast nuclear pore complex: Composition, architecture, and transport mechanism
    • Rout, M. P., J. D. Aitchison, A. Suprapto, K. Hjertaas, Y. Zhao, and B. T. Chait. 2000. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148:635-651.
    • (2000) J. Cell Biol , vol.148 , pp. 635-651
    • Rout, M.P.1    Aitchison, J.D.2    Suprapto, A.3    Hjertaas, K.4    Zhao, Y.5    Chait, B.T.6
  • 50
    • 0033954495 scopus 로고    scopus 로고
    • Inactivation of six genes from chromosomes VII and XIV of Saccharomyces cerevisiae and basic phenotypic analysis of the mutant strains
    • Sartori, G., G. Mazzotta, S. Stocchetto, A. Pavanello, and G. Carignani. 2000. Inactivation of six genes from chromosomes VII and XIV of Saccharomyces cerevisiae and basic phenotypic analysis of the mutant strains. Yeast 16:255-265.
    • (2000) Yeast , vol.16 , pp. 255-265
    • Sartori, G.1    Mazzotta, G.2    Stocchetto, S.3    Pavanello, A.4    Carignani, G.5
  • 52
    • 18144423141 scopus 로고    scopus 로고
    • Polyribosome binding by GCN1 is required for full activation of eukaryotic translation initiation factor 2α kinase GCN2 during amino acid starvation
    • Sattlegger, E., and A. G. Hinnebusch. 2005. Polyribosome binding by GCN1 is required for full activation of eukaryotic translation initiation factor 2α kinase GCN2 during amino acid starvation. J. Biol. Chem. 280:16514-16521.
    • (2005) J. Biol. Chem , vol.280 , pp. 16514-16521
    • Sattlegger, E.1    Hinnebusch, A.G.2
  • 53
    • 0034407117 scopus 로고    scopus 로고
    • Separate domains in GCN1 for binding protein kinase GCN2 and ribosomes are required for GCN2 activation in amino acid-starved cells
    • Sattlegger, E., and A. G. Hinnebusch. 2000. Separate domains in GCN1 for binding protein kinase GCN2 and ribosomes are required for GCN2 activation in amino acid-starved cells. EMBO J. 19:6622-6633.
    • (2000) EMBO J , vol.19 , pp. 6622-6633
    • Sattlegger, E.1    Hinnebusch, A.G.2
  • 54
    • 3142718197 scopus 로고    scopus 로고
    • YIH1 is an actin-binding protein that inhibits protein kinase GCN2 and impairs general amino acid control when overexpressed
    • Sattlegger, E., M. J. Swanson, E. A. Ashcraft, J. L. Jennings, R. A. Fekete, A. J. Link, and A. G. Hinnebusch. 2004. YIH1 is an actin-binding protein that inhibits protein kinase GCN2 and impairs general amino acid control when overexpressed. J. Biol. Chem. 279:29952-29962.
    • (2004) J. Biol. Chem , vol.279 , pp. 29952-29962
    • Sattlegger, E.1    Swanson, M.J.2    Ashcraft, E.A.3    Jennings, J.L.4    Fekete, R.A.5    Link, A.J.6    Hinnebusch, A.G.7
  • 56
    • 0027066894 scopus 로고    scopus 로고
    • Sazuka, T., Y. Tomooka, Y. Ikawa, M. Noda, and S. Kumar. 1992. DRG: a novel developmentally regulated GTP-binding protein. Biochem. Biophys. Res. Commun. 189:363-370.
    • Sazuka, T., Y. Tomooka, Y. Ikawa, M. Noda, and S. Kumar. 1992. DRG: a novel developmentally regulated GTP-binding protein. Biochem. Biophys. Res. Commun. 189:363-370.
  • 57
    • 0034602848 scopus 로고    scopus 로고
    • Modulation of RNA function by aminoglycoside antibiotics
    • Schroeder, R., C. Waldsich, and H. Wank. 2000. Modulation of RNA function by aminoglycoside antibiotics. EMBO J. 19:1-9.
    • (2000) EMBO J , vol.19 , pp. 1-9
    • Schroeder, R.1    Waldsich, C.2    Wank, H.3
  • 58
    • 0032765908 scopus 로고    scopus 로고
    • Obg, an essential GTP binding protein of Bacillus subtilis, is necessary for stress activation of transcription factor sigma(B)
    • Scott, J. M., and W. G. Haldenwang. 1999. Obg, an essential GTP binding protein of Bacillus subtilis, is necessary for stress activation of transcription factor sigma(B). J. Bacteriol. 181:4653-4660.
    • (1999) J. Bacteriol , vol.181 , pp. 4653-4660
    • Scott, J.M.1    Haldenwang, W.G.2
  • 59
    • 0034060502 scopus 로고    scopus 로고
    • The Bacillus subtilis GTP binding protein Obg and regulators of the sigma(B) stress response transcription factor cofractionate with ribosomes
    • Scott, J. M., J. Ju, T. Mitchell, and W. G. Haldenwang. 2000. The Bacillus subtilis GTP binding protein Obg and regulators of the sigma(B) stress response transcription factor cofractionate with ribosomes. J. Bacteriol. 182: 2771-2777.
    • (2000) J. Bacteriol , vol.182 , pp. 2771-2777
    • Scott, J.M.1    Ju, J.2    Mitchell, T.3    Haldenwang, W.G.4
  • 60
    • 29044442633 scopus 로고    scopus 로고
    • The Vibrio harveyi GTPase CgtAV is essential and is associated with the 50S ribosomal subunit
    • Sikora, A. E., R. Zielke, K. Datta, and J. R. Maddock. 2006. The Vibrio harveyi GTPase CgtAV is essential and is associated with the 50S ribosomal subunit. J. Bacteriol. 188:1205-1210.
    • (2006) J. Bacteriol , vol.188 , pp. 1205-1210
    • Sikora, A.E.1    Zielke, R.2    Datta, K.3    Maddock, J.R.4
  • 61
    • 0036237999 scopus 로고    scopus 로고
    • Overexpression of two different GTPases rescues a null mutation in a heat-induced rRNA methyltransferase
    • Tan, J., U. Jakob, and J. C. Bardwell. 2002. Overexpression of two different GTPases rescues a null mutation in a heat-induced rRNA methyltransferase. J. Bacteriol. 184:2692-2698.
    • (2002) J. Bacteriol , vol.184 , pp. 2692-2698
    • Tan, J.1    Jakob, U.2    Bardwell, J.C.3
  • 62
    • 0024977417 scopus 로고
    • Elevated recombination rates in transcriptionally active DNA
    • Thomas, B. J., and R. Rothstein. 1989. Elevated recombination rates in transcriptionally active DNA. Cell 56:619-630.
    • (1989) Cell , vol.56 , pp. 619-630
    • Thomas, B.J.1    Rothstein, R.2
  • 63
    • 0027424777 scopus 로고
    • Isolation and characterization of autophagy- defective mutants of Saccharomyces cerevisiae
    • Tsukada, M., and Y. Ohsumi. 1993. Isolation and characterization of autophagy- defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333:169- 174.
    • (1993) FEBS Lett , vol.333 , pp. 169-174
    • Tsukada, M.1    Ohsumi, Y.2
  • 65
    • 0029001571 scopus 로고
    • GCN20, a novel ATP binding cassette protein, and GCN1 reside in a complex that mediates activation of the eIF-2α kinase GCN2 in amino acidstarved cells
    • Vazquez de Aldana, C. R., M. J. Marton, and A. G. Hinnebusch. 1995. GCN20, a novel ATP binding cassette protein, and GCN1 reside in a complex that mediates activation of the eIF-2α kinase GCN2 in amino acidstarved cells. EMBO J. 14:3184-3199.
    • (1995) EMBO J , vol.14 , pp. 3184-3199
    • Vazquez de Aldana, C.R.1    Marton, M.J.2    Hinnebusch, A.G.3
  • 66
    • 0031000833 scopus 로고    scopus 로고
    • Ribosomal protein L32 of Saccharomyces cerevisiae influences both the splicing of its own transcript and the processing of rRNA
    • Vilardell, J., and J. R. Warner. 1997. Ribosomal protein L32 of Saccharomyces cerevisiae influences both the splicing of its own transcript and the processing of rRNA. Mol. Cell. Biol. 17:1959-1965.
    • (1997) Mol. Cell. Biol , vol.17 , pp. 1959-1965
    • Vilardell, J.1    Warner, J.R.2
  • 67
    • 0035197028 scopus 로고    scopus 로고
    • EBP2 is a member of the yeast RRB regulon, a transcriptionally coregulated set of genes that are required for ribosome and rRNA biosynthesis
    • Wade, C., K. A. Shea, R. V. Jensen, and M. A. McAlear. 2001. EBP2 is a member of the yeast RRB regulon, a transcriptionally coregulated set of genes that are required for ribosome and rRNA biosynthesis. Mol. Cell. Biol. 21:8638-8650.
    • (2001) Mol. Cell. Biol , vol.21 , pp. 8638-8650
    • Wade, C.1    Shea, K.A.2    Jensen, R.V.3    McAlear, M.A.4
  • 68
    • 0029006391 scopus 로고
    • The histidyl-tRNA synthetaserelated sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids
    • Wek, S. A., S. Zhu, and R. C. Wek. 1995. The histidyl-tRNA synthetaserelated sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol. Cell. Biol. 15:4497-4506.
    • (1995) Mol. Cell. Biol , vol.15 , pp. 4497-4506
    • Wek, S.A.1    Zhu, S.2    Wek, R.C.3
  • 69
    • 0032830481 scopus 로고    scopus 로고
    • Evolution of aminoacyl-tRNA synthetases: Analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events
    • Wolf, Y. I., L. Aravind, N. V. Grishin, and E. V. Koonin. 1999. Evolution of aminoacyl-tRNA synthetases: analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res. 9:689-710.
    • (1999) Genome Res , vol.9 , pp. 689-710
    • Wolf, Y.I.1    Aravind, L.2    Grishin, N.V.3    Koonin, E.V.4
  • 70
    • 3843074167 scopus 로고    scopus 로고
    • The Escherichia coli GTPase CgtAE cofractionates with the 50S ribosomal subunit and interacts with SpoT, a ppGpp synthetase/hydrolase
    • Wout, P., K. Pu, S. M. Sullivan, V. Reese, S. Zhou, B. Lin, and J. R. Maddock. 2004. The Escherichia coli GTPase CgtAE cofractionates with the 50S ribosomal subunit and interacts with SpoT, a ppGpp synthetase/hydrolase. J. Bacteriol. 186:5249-5257.
    • (2004) J. Bacteriol , vol.186 , pp. 5249-5257
    • Wout, P.1    Pu, K.2    Sullivan, S.M.3    Reese, V.4    Zhou, S.5    Lin, B.6    Maddock, J.R.7
  • 71
    • 0025992789 scopus 로고
    • Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations
    • Xiao, H., M. Kalman, K. Ikehara, S. Zemel, G. Glaser, and M. Cashel. 1991. Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J. Biol. Chem. 266:5980- 5990.
    • (1991) J. Biol. Chem , vol.266 , pp. 5980-5990
    • Xiao, H.1    Kalman, M.2    Ikehara, K.3    Zemel, S.4    Glaser, G.5    Cashel, M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.