-
1
-
-
19444386382
-
Gir2 is an intrinsically unstructured protein that is present in Saccharomyces cerevisiae as a group of heterogeneously electrophoretic migrating forms
-
Alves, V. S., and B. A. Castilho. 2005. Gir2 is an intrinsically unstructured protein that is present in Saccharomyces cerevisiae as a group of heterogeneously electrophoretic migrating forms. Biochem. Biophys. Res. Commun. 332:450-455.
-
(2005)
Biochem. Biophys. Res. Commun
, vol.332
, pp. 450-455
-
-
Alves, V.S.1
Castilho, B.A.2
-
2
-
-
0346095160
-
Biophysical characterization of Gir2, a highly acidic protein of Saccharomyces cerevisiae with anomalous electrophoretic behavior
-
Alves, V. S., D. C. Pimenta, E. Sattlegger, and B. A. Castilho. 2004. Biophysical characterization of Gir2, a highly acidic protein of Saccharomyces cerevisiae with anomalous electrophoretic behavior. Biochem. Biophys. Res. Commun. 314:229-234.
-
(2004)
Biochem. Biophys. Res. Commun
, vol.314
, pp. 229-234
-
-
Alves, V.S.1
Pimenta, D.C.2
Sattlegger, E.3
Castilho, B.A.4
-
3
-
-
33750479525
-
Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism
-
Battesti, A., and E. Bouveret. 2006. Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. Mol. Microbiol. 62:1048-1063.
-
(2006)
Mol. Microbiol
, vol.62
, pp. 1048-1063
-
-
Battesti, A.1
Bouveret, E.2
-
5
-
-
0030762073
-
SOI1 encodes a novel, conserved protein that promotes TGN-endosomal cycling of Kex2p and other membrane proteins by modulating the function of two TGN localization signals
-
Brickner, J. H., and R. S. Fuller. 1997. SOI1 encodes a novel, conserved protein that promotes TGN-endosomal cycling of Kex2p and other membrane proteins by modulating the function of two TGN localization signals. J. Cell Biol. 139:23-36.
-
(1997)
J. Cell Biol
, vol.139
, pp. 23-36
-
-
Brickner, J.H.1
Fuller, R.S.2
-
6
-
-
0038352105
-
Function of the universally conserved bacterial GTPases
-
Caldon, C. E., and P. E. March. 2003. Function of the universally conserved bacterial GTPases. Curr. Opin. Microbiol. 6:135-139.
-
(2003)
Curr. Opin. Microbiol
, vol.6
, pp. 135-139
-
-
Caldon, C.E.1
March, P.E.2
-
7
-
-
0026512939
-
Multifunctional yeast high-copy-number shuttle vectors
-
Christianson, T. W., R. S. Sikorski, M. Dante, J. H. Shero, and P. Hieter. 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110: 119-122.
-
(1992)
Gene
, vol.110
, pp. 119-122
-
-
Christianson, T.W.1
Sikorski, R.S.2
Dante, M.3
Shero, J.H.4
Hieter, P.5
-
8
-
-
12844288568
-
The yeast GTPase Mtg2p is required for mitochondrial translation and partially suppresses an rRNA methyltransferase mutant, mrm2
-
Datta, K., J. L. Fuentes, and J. R. Maddock. 2005. The yeast GTPase Mtg2p is required for mitochondrial translation and partially suppresses an rRNA methyltransferase mutant, mrm2. Mol. Biol. Cell 16:954-963.
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 954-963
-
-
Datta, K.1
Fuentes, J.L.2
Maddock, J.R.3
-
9
-
-
0026556814
-
Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast
-
Dever, T. E., L. Feng, R. C. Wek, A. M. Cigan, T. F. Donahue, and A. G. Hinnebusch. 1992. Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68:585-596.
-
(1992)
Cell
, vol.68
, pp. 585-596
-
-
Dever, T.E.1
Feng, L.2
Wek, R.C.3
Cigan, A.M.4
Donahue, T.F.5
Hinnebusch, A.G.6
-
10
-
-
33646537802
-
Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes
-
Fleischer, T. C., C. M. Weaver, K. J. McAfee, J. L. Jennings, and A. J. Link. 2006. Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes. Genes Dev. 20: 1294-1307.
-
(2006)
Genes Dev
, vol.20
, pp. 1294-1307
-
-
Fleischer, T.C.1
Weaver, C.M.2
McAfee, K.J.3
Jennings, J.L.4
Link, A.J.5
-
11
-
-
0025869164
-
GCD2, a translational repressor of the GCN4 gene, has a general function in the initiation of protein synthesis in Saccharomyces cerevisiae
-
Foiani, M., A. M. Cigan, C. J. Paddon, S. Harashima, and A. G. Hinnebusch. 1991. GCD2, a translational repressor of the GCN4 gene, has a general function in the initiation of protein synthesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:3203-3216.
-
(1991)
Mol. Cell. Biol
, vol.11
, pp. 3203-3216
-
-
Foiani, M.1
Cigan, A.M.2
Paddon, C.J.3
Harashima, S.4
Hinnebusch, A.G.5
-
12
-
-
34250302662
-
In vivo functional characterization of the Saccharomyces cerevisiae 60S biogenesis GTPase Nog1
-
Fuentes, J. L., K. Datta, S. M. Sullivan, A. Walker, and J. R. Maddock. 2007. In vivo functional characterization of the Saccharomyces cerevisiae 60S biogenesis GTPase Nog1. Mol. Genet. Genomics 278:105-123.
-
(2007)
Mol. Genet. Genomics
, vol.278
, pp. 105-123
-
-
Fuentes, J.L.1
Datta, K.2
Sullivan, S.M.3
Walker, A.4
Maddock, J.R.5
-
13
-
-
0034678890
-
Association of GCN1-GCN20 regulatory complex with the N terminus of eIF2α kinase GCN2 is required for GCN2 activation
-
Garcia-Barrio, M., J. Dong, S. Ufano, and A. G. Hinnebusch. 2000. Association of GCN1-GCN20 regulatory complex with the N terminus of eIF2α kinase GCN2 is required for GCN2 activation. EMBO J. 19:1887-1899.
-
(2000)
EMBO J
, vol.19
, pp. 1887-1899
-
-
Garcia-Barrio, M.1
Dong, J.2
Ufano, S.3
Hinnebusch, A.G.4
-
14
-
-
33644555054
-
Proteome survey reveals modularity of the yeast cell machinery
-
Gavin, A. C., P. Aloy, P. Grandi, R. Krause, M. Boesche, M. Marzioch, C. Rau, L. J. Jensen, S. Bastuck, B. Dumpelfeld, A. Edelmann, M. A. Heurtier, V. Hoffman, C. Hoefert, K. Klein, M. Hudak, A. M. Michon, M. Schelder, M. Schirle, M. Remor, T. Rudi, S. Hooper, A. Bauer, T. Bouwmeester, G. Casari, G. Drewes, G. Neubauer, J. M. Rick, B. Kuster, P. Bork, R. B. Russell, and G. Superti-Furga. 2006. Proteome survey reveals modularity of the yeast cell machinery. Nature 440:631-636.
-
(2006)
Nature
, vol.440
, pp. 631-636
-
-
Gavin, A.C.1
Aloy, P.2
Grandi, P.3
Krause, R.4
Boesche, M.5
Marzioch, M.6
Rau, C.7
Jensen, L.J.8
Bastuck, S.9
Dumpelfeld, B.10
Edelmann, A.11
Heurtier, M.A.12
Hoffman, V.13
Hoefert, C.14
Klein, K.15
Hudak, M.16
Michon, A.M.17
Schelder, M.18
Schirle, M.19
Remor, M.20
Rudi, T.21
Hooper, S.22
Bauer, A.23
Bouwmeester, T.24
Casari, G.25
Drewes, G.26
Neubauer, G.27
Rick, J.M.28
Kuster, B.29
Bork, P.30
Russell, R.B.31
Superti-Furga, G.32
more..
-
15
-
-
0037050026
-
-
Gavin, A. C., M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, J. M. Rick, A. M. Michon, C. M. Cruciat, M. Remor, C. Hofert, M. Schelder, M. Brajenovic, H. Ruffner, A. Merino, K. Klein, M. Hudak, D. Dickson, T. Rudi, V. Gnau, A. Bauch, S. Bastuck, B. Huhse, C. Leutwein, M. A. Heurtier, R. R. Copley, A. Edelmann, E. Querfurth, V. Rybin, G. Drewes, M. Raida, T. Bouwmeester, P. Bork, B. Seraphin, B. Kuster, G. Neubauer, and G. Superti-Furga. 2002. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141-147.
-
Gavin, A. C., M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, J. M. Rick, A. M. Michon, C. M. Cruciat, M. Remor, C. Hofert, M. Schelder, M. Brajenovic, H. Ruffner, A. Merino, K. Klein, M. Hudak, D. Dickson, T. Rudi, V. Gnau, A. Bauch, S. Bastuck, B. Huhse, C. Leutwein, M. A. Heurtier, R. R. Copley, A. Edelmann, E. Querfurth, V. Rybin, G. Drewes, M. Raida, T. Bouwmeester, P. Bork, B. Seraphin, B. Kuster, G. Neubauer, and G. Superti-Furga. 2002. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141-147.
-
-
-
-
16
-
-
28844501851
-
Oxidant-specific folding of Yap1p regulates both transcriptional activation and nuclear localization
-
Gulshan, K., S. A. Rovinsky, S. T. Coleman, and W. S. Moye-Rowley. 2005. Oxidant-specific folding of Yap1p regulates both transcriptional activation and nuclear localization. J. Biol. Chem. 280:40524-40533.
-
(2005)
J. Biol. Chem
, vol.280
, pp. 40524-40533
-
-
Gulshan, K.1
Rovinsky, S.A.2
Coleman, S.T.3
Moye-Rowley, W.S.4
-
17
-
-
0027496935
-
The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclindependent kinases
-
Harper, J. W., G. R. Adami, N. Wei, K. Keyomarsi, and S. J. Elledge. 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclindependent kinases. Cell 75:805-816.
-
(1993)
Cell
, vol.75
, pp. 805-816
-
-
Harper, J.W.1
Adami, G.R.2
Wei, N.3
Keyomarsi, K.4
Elledge, S.J.5
-
18
-
-
0007825206
-
Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes
-
Haseltine, W. A., and R. Block. 1973. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc. Natl. Acad. Sci. USA 70:1564-1568.
-
(1973)
Proc. Natl. Acad. Sci. USA
, vol.70
, pp. 1564-1568
-
-
Haseltine, W.A.1
Block, R.2
-
19
-
-
0017749190
-
In vitro degradation of guanosine tetraphosphate (ppGpp) by an enzyme associated with the ribosomal fraction from Escherichia coli
-
Heinemeyer, E. A., and D. Richter. 1977. In vitro degradation of guanosine tetraphosphate (ppGpp) by an enzyme associated with the ribosomal fraction from Escherichia coli. FEBS Lett. 84:357-361.
-
(1977)
FEBS Lett
, vol.84
, pp. 357-361
-
-
Heinemeyer, E.A.1
Richter, D.2
-
20
-
-
0025947362
-
Escherichia coli ppGpp synthetase II activity requires spoT
-
Hernandez, V. J., and H. Bremer. 1991. Escherichia coli ppGpp synthetase II activity requires spoT. J. Biol. Chem. 266:5991-5999.
-
(1991)
J. Biol. Chem
, vol.266
, pp. 5991-5999
-
-
Hernandez, V.J.1
Bremer, H.2
-
21
-
-
27144510561
-
Translational regulation of GCN4 and the general amino acid control of yeast
-
Hinnebusch, A. G. 2005. Translational regulation of GCN4 and the general amino acid control of yeast. Annu. Rev. Microbiol. 59:407-450.
-
(2005)
Annu. Rev. Microbiol
, vol.59
, pp. 407-450
-
-
Hinnebusch, A.G.1
-
22
-
-
0020572457
-
Positive regulation in the general amino acid control of Saccharomyces cerevisiae
-
Hinnebusch, A. G., and G. R. Fink. 1983. Positive regulation in the general amino acid control of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 80:5374-5378.
-
(1983)
Proc. Natl. Acad. Sci. USA
, vol.80
, pp. 5374-5378
-
-
Hinnebusch, A.G.1
Fink, G.R.2
-
23
-
-
0142184341
-
Global analysis of protein localization in budding yeast
-
Huh, W. K., J. V. Falvo, L. C. Gerke, A. S. Carroll, R. W. Howson, J. S. Weissman, and E. K. O'Shea. 2003. Global analysis of protein localization in budding yeast. Nature 425:686-691.
-
(2003)
Nature
, vol.425
, pp. 686-691
-
-
Huh, W.K.1
Falvo, J.V.2
Gerke, L.C.3
Carroll, A.S.4
Howson, R.W.5
Weissman, J.S.6
O'Shea, E.K.7
-
24
-
-
14244263018
-
Identification of DRG family regulatory proteins (DFRPs): Specific regulation of DRG1 and DRG2
-
Ishikawa, K., S. Azuma, S. Ikawa, K. Semba, and J. Inoue. 2005. Identification of DRG family regulatory proteins (DFRPs): specific regulation of DRG1 and DRG2. Genes Cells 10:139-150.
-
(2005)
Genes Cells
, vol.10
, pp. 139-150
-
-
Ishikawa, K.1
Azuma, S.2
Ikawa, S.3
Semba, K.4
Inoue, J.5
-
25
-
-
0035836765
-
A comprehensive two-hybrid analysis to explore the yeast protein interactome
-
Ito, T., T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki. 2001. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98:4569-4574.
-
(2001)
Proc. Natl. Acad. Sci. USA
, vol.98
, pp. 4569-4574
-
-
Ito, T.1
Chiba, T.2
Ozawa, R.3
Yoshida, M.4
Hattori, M.5
Sakaki, Y.6
-
26
-
-
0033974688
-
Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins
-
Ito, T., K. Tashiro, S. Muta, R. Ozawa, T. Chiba, M. Nishizawa, K. Yamamoto, S. Kuhara, and Y. Sakaki. 2000. Toward a protein-protein interaction map of the budding yeast: a comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc. Natl. Acad. Sci. USA 97:1143-1147.
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, pp. 1143-1147
-
-
Ito, T.1
Tashiro, K.2
Muta, S.3
Ozawa, R.4
Chiba, T.5
Nishizawa, M.6
Yamamoto, K.7
Kuhara, S.8
Sakaki, Y.9
-
27
-
-
0030455820
-
Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast
-
James, P., J. Halladay, and E. A. Craig. 1996. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425-1436.
-
(1996)
Genetics
, vol.144
, pp. 1425-1436
-
-
James, P.1
Halladay, J.2
Craig, E.A.3
-
28
-
-
0042858143
-
The NOG1 GTP-binding protein is required for biogenesis of the 60 S ribosomal subunit
-
Jensen, B. C., Q. Wang, C. T. Kifer, and M. Parsons. 2003. The NOG1 GTP-binding protein is required for biogenesis of the 60 S ribosomal subunit. J. Biol. Chem. 278:32204-32211.
-
(2003)
J. Biol. Chem
, vol.278
, pp. 32204-32211
-
-
Jensen, B.C.1
Wang, Q.2
Kifer, C.T.3
Parsons, M.4
-
29
-
-
33749362996
-
The Escherichia coli GTPase CgtAE is involved in late steps of large ribosome assembly
-
Jiang, M., K. Datta, A. Walker, J. Strahler, P. Bagamasbad, P. C. Andrews, and J. R. Maddock. 2006. The Escherichia coli GTPase CgtAE is involved in late steps of large ribosome assembly. J. Bacteriol. 188:6757-6770.
-
(2006)
J. Bacteriol
, vol.188
, pp. 6757-6770
-
-
Jiang, M.1
Datta, K.2
Walker, A.3
Strahler, J.4
Bagamasbad, P.5
Andrews, P.C.6
Maddock, J.R.7
-
30
-
-
34548513288
-
G-protein control of the ribosome-associated stress response protein SpoT
-
Jiang, M., S. M. Sullivan, P. K. Wout, and J. R. Maddock. 2007. G-protein control of the ribosome-associated stress response protein SpoT. J. Bacteriol. 189:6140-6147.
-
(2007)
J. Bacteriol
, vol.189
, pp. 6140-6147
-
-
Jiang, M.1
Sullivan, S.M.2
Wout, P.K.3
Maddock, J.R.4
-
31
-
-
0038316568
-
The putative GTPases Nog1p and Lsg1p are required for 60S ribosomal subunit biogenesis and are localized to the nucleus and cytoplasm, respectively
-
Kallstrom, G., J. Hedges, and A. Johnson. 2003. The putative GTPases Nog1p and Lsg1p are required for 60S ribosomal subunit biogenesis and are localized to the nucleus and cytoplasm, respectively. Mol. Cell. Biol. 23: 4344-4355.
-
(2003)
Mol. Cell. Biol
, vol.23
, pp. 4344-4355
-
-
Kallstrom, G.1
Hedges, J.2
Johnson, A.3
-
32
-
-
34547116221
-
Human OLA1 defines an ATPase subfamily in the Obg family of GTP-binding proteins
-
Koller-Eichhorn, R., T. Marquardt, R. Gail, A. Wittinghofer, D. Kostrewa, U. Kutay, and C. Kambach. 2007. Human OLA1 defines an ATPase subfamily in the Obg family of GTP-binding proteins. J. Biol. Chem. 282:19928- 19937.
-
(2007)
J. Biol. Chem
, vol.282
, pp. 19928-19937
-
-
Koller-Eichhorn, R.1
Marquardt, T.2
Gail, R.3
Wittinghofer, A.4
Kostrewa, D.5
Kutay, U.6
Kambach, C.7
-
33
-
-
33645453254
-
-
Krogan, N. J., G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko, J. Li, S. Pu, N. Datta, A. P. Tikuisis, T. Punna, J. M. Peregrin-Alvarez, M. Shales, X. Zhang, M. Davey, M. D. Robinson, A. Paccanaro, J. E. Bray, A. Sheung, B. Beattie, D. P. Richards, V. Canadien, A. Lalev, F. Mena, P. Wong, A. Starostine, M. M. Canete, J. Vlasblom, S. Wu, C. Orsi, S. R. Collins, S. Chandran, R. Haw, J. J. Rilstone, K. Gandi, N. J. Thompson, G. Musso, P. St Onge, S. Ghanny, M. H. Lam, G. Butland, A. M. Altaf-Ul, S. Kanaya, A. Shilatifard, E. O'Shea, J. S. Weissman, C. J. Ingles, T. R. Hughes, J. Parkinson, M. Gerstein, S. J. Wodak, A. Emili, and J. F. Greenblatt. 2006. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637-643.
-
Krogan, N. J., G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko, J. Li, S. Pu, N. Datta, A. P. Tikuisis, T. Punna, J. M. Peregrin-Alvarez, M. Shales, X. Zhang, M. Davey, M. D. Robinson, A. Paccanaro, J. E. Bray, A. Sheung, B. Beattie, D. P. Richards, V. Canadien, A. Lalev, F. Mena, P. Wong, A. Starostine, M. M. Canete, J. Vlasblom, S. Wu, C. Orsi, S. R. Collins, S. Chandran, R. Haw, J. J. Rilstone, K. Gandi, N. J. Thompson, G. Musso, P. St Onge, S. Ghanny, M. H. Lam, G. Butland, A. M. Altaf-Ul, S. Kanaya, A. Shilatifard, E. O'Shea, J. S. Weissman, C. J. Ingles, T. R. Hughes, J. Parkinson, M. Gerstein, S. J. Wodak, A. Emili, and J. F. Greenblatt. 2006. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637-643.
-
-
-
-
34
-
-
0034617211
-
GI domain-mediated association of the eukaryotic initiation factor 2α kinase GCN2 with its activator GCN1 is required for general amino acid control in budding yeast
-
Kubota, H., Y. Sakaki, and T. Ito. 2000. GI domain-mediated association of the eukaryotic initiation factor 2α kinase GCN2 with its activator GCN1 is required for general amino acid control in budding yeast. J. Biol. Chem. 275:20243-20246.
-
(2000)
J. Biol. Chem
, vol.275
, pp. 20243-20246
-
-
Kubota, H.1
Sakaki, Y.2
Ito, T.3
-
35
-
-
0028057226
-
YAP1-dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides
-
Kuge, S., and N. Jones. 1994. YAP1-dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J. 13:655-664.
-
(1994)
EMBO J
, vol.13
, pp. 655-664
-
-
Kuge, S.1
Jones, N.2
-
36
-
-
0030942294
-
Regulation of yAP-1 nuclear localization in response to oxidative stress
-
Kuge, S., N. Jones, and A. Nomoto. 1997. Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J. 16:1710-1720.
-
(1997)
EMBO J
, vol.16
, pp. 1710-1720
-
-
Kuge, S.1
Jones, N.2
Nomoto, A.3
-
37
-
-
35649005949
-
Restricting conformational flexibility of the switch II region creates a dominant-inhibitory phenotype in Obg GTPase Nog1
-
Lapik, Y. R., J. M. Misra, L. F. Lau, and D. G. Pestov. 2007. Restricting conformational flexibility of the switch II region creates a dominant-inhibitory phenotype in Obg GTPase Nog1. Mol. Cell. Biol. 27:7735-7744.
-
(2007)
Mol. Cell. Biol
, vol.27
, pp. 7735-7744
-
-
Lapik, Y.R.1
Misra, J.M.2
Lau, L.F.3
Pestov, D.G.4
-
38
-
-
0036295212
-
Classification and evolution of P-loop GTPases and related ATPases
-
Leipe, D. D., Y. I. Wolf, E. V. Koonin, and L. Aravind. 2002. Classification and evolution of P-loop GTPases and related ATPases. J. Mol. Biol. 317: 41-72.
-
(2002)
J. Mol. Biol
, vol.317
, pp. 41-72
-
-
Leipe, D.D.1
Wolf, Y.I.2
Koonin, E.V.3
Aravind, L.4
-
39
-
-
0346024113
-
The Caulobacter crescentus CgtAC protein cosediments with the free 50S ribosomal subunit
-
Lin, B., D. A. Thayer, and J. R. Maddock. 2004. The Caulobacter crescentus CgtAC protein cosediments with the free 50S ribosomal subunit. J. Bacteriol. 186:481-489.
-
(2004)
J. Bacteriol
, vol.186
, pp. 481-489
-
-
Lin, B.1
Thayer, D.A.2
Maddock, J.R.3
-
40
-
-
0031820288
-
Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae
-
Longtine, M. S., A. McKenzie III, D. J. Demarini, N. G. Shah, A. Wach, A. Brachat, P. Philippsen, and J. R. Pringle. 1998. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953-961.
-
(1998)
Yeast
, vol.14
, pp. 953-961
-
-
Longtine, M.S.1
McKenzie III, A.2
Demarini, D.J.3
Shah, N.G.4
Wach, A.5
Brachat, A.6
Philippsen, P.7
Pringle, J.R.8
-
41
-
-
0027175499
-
GCN1, a translational activator of GCN4 in Saccharomyces cerevisiae, is required for phosphorylation of eukaryotic translation initiation factor 2 by protein kinase GCN2
-
Marton, M. J., D. Crouch, and A. G. Hinnebusch. 1993. GCN1, a translational activator of GCN4 in Saccharomyces cerevisiae, is required for phosphorylation of eukaryotic translation initiation factor 2 by protein kinase GCN2. Mol. Cell. Biol. 13:3541-3556.
-
(1993)
Mol. Cell. Biol
, vol.13
, pp. 3541-3556
-
-
Marton, M.J.1
Crouch, D.2
Hinnebusch, A.G.3
-
42
-
-
1842287951
-
Evidence that GCN1 and GCN20, translational regulators of GCN4, function on elongating ribosomes in activation of eIF2α kinase GCN2
-
Marton, M. J., C. R. Vazquez de Aldana, H. Qiu, K. Chakraburtty, and A. G. Hinnebusch. 1997. Evidence that GCN1 and GCN20, translational regulators of GCN4, function on elongating ribosomes in activation of eIF2α kinase GCN2. Mol. Cell. Biol. 17:4474-4489.
-
(1997)
Mol. Cell. Biol
, vol.17
, pp. 4474-4489
-
-
Marton, M.J.1
Vazquez de Aldana, C.R.2
Qiu, H.3
Chakraburtty, K.4
Hinnebusch, A.G.5
-
43
-
-
0026320245
-
Association of RAP1 binding sites with stringent control of ribosomal protein gene transcription in Saccharomyces cerevisiae
-
Moehle, C. M., and A. G. Hinnebusch. 1991. Association of RAP1 binding sites with stringent control of ribosomal protein gene transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:2723-2735.
-
(1991)
Mol. Cell. Biol
, vol.11
, pp. 2723-2735
-
-
Moehle, C.M.1
Hinnebusch, A.G.2
-
44
-
-
0022512237
-
Multiple upstream AUG codons mediate translational control of GCN4
-
Mueller, P. P., and A. G. Hinnebusch. 1986. Multiple upstream AUG codons mediate translational control of GCN4. Cell 45:201-207.
-
(1986)
Cell
, vol.45
, pp. 201-207
-
-
Mueller, P.P.1
Hinnebusch, A.G.2
-
45
-
-
0028586017
-
Regulatable promoters of Saccharomyces cerevisiae: Comparison of transcriptional activity and their use for heterologous expression
-
Mumberg, D., R. Muller, and M. Funk. 1994. Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res. 22:5767-5768.
-
(1994)
Nucleic Acids Res
, vol.22
, pp. 5767-5768
-
-
Mumberg, D.1
Muller, R.2
Funk, M.3
-
46
-
-
2442563845
-
Localization of the stringent protein of Escherichia coli on the 50S ribosomal subunit
-
Ramagopal, S., and B. D. Davis. 1974. Localization of the stringent protein of Escherichia coli on the 50S ribosomal subunit. Proc. Natl. Acad. Sci. USA 71:820-824.
-
(1974)
Proc. Natl. Acad. Sci. USA
, vol.71
, pp. 820-824
-
-
Ramagopal, S.1
Davis, B.D.2
-
47
-
-
0025801817
-
Ribosome association of GCN2 protein kinase, a translational activator of the GCN4 gene of Saccharomyces cerevisiae
-
Ramirez, M., R. C. Wek, and A. G. Hinnebusch. 1991. Ribosome association of GCN2 protein kinase, a translational activator of the GCN4 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 11:3027-3036.
-
(1991)
Mol. Cell. Biol
, vol.11
, pp. 3027-3036
-
-
Ramirez, M.1
Wek, R.C.2
Hinnebusch, A.G.3
-
48
-
-
34248328786
-
Regulation of the stringent response is the essential function of the conserved bacterial G protein CgtA in Vibrio cholerae
-
Raskin, D. M., N. Judson, and J. J. Mekalanos. 2007. Regulation of the stringent response is the essential function of the conserved bacterial G protein CgtA in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 104:4636-4641.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 4636-4641
-
-
Raskin, D.M.1
Judson, N.2
Mekalanos, J.J.3
-
49
-
-
0034695924
-
The yeast nuclear pore complex: Composition, architecture, and transport mechanism
-
Rout, M. P., J. D. Aitchison, A. Suprapto, K. Hjertaas, Y. Zhao, and B. T. Chait. 2000. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148:635-651.
-
(2000)
J. Cell Biol
, vol.148
, pp. 635-651
-
-
Rout, M.P.1
Aitchison, J.D.2
Suprapto, A.3
Hjertaas, K.4
Zhao, Y.5
Chait, B.T.6
-
50
-
-
0033954495
-
Inactivation of six genes from chromosomes VII and XIV of Saccharomyces cerevisiae and basic phenotypic analysis of the mutant strains
-
Sartori, G., G. Mazzotta, S. Stocchetto, A. Pavanello, and G. Carignani. 2000. Inactivation of six genes from chromosomes VII and XIV of Saccharomyces cerevisiae and basic phenotypic analysis of the mutant strains. Yeast 16:255-265.
-
(2000)
Yeast
, vol.16
, pp. 255-265
-
-
Sartori, G.1
Mazzotta, G.2
Stocchetto, S.3
Pavanello, A.4
Carignani, G.5
-
51
-
-
17844397959
-
The GTP binding protein Obg homolog ObgE is involved in ribosome maturation
-
Sato, A., G. Kobayashi, H. Hayashi, H. Yoshida, A. Wada, M. Maeda, S. Hiraga, K. Takeyasu, and C. Wada. 2005. The GTP binding protein Obg homolog ObgE is involved in ribosome maturation. Genes Cells 10:393- 408.
-
(2005)
Genes Cells
, vol.10
, pp. 393-408
-
-
Sato, A.1
Kobayashi, G.2
Hayashi, H.3
Yoshida, H.4
Wada, A.5
Maeda, M.6
Hiraga, S.7
Takeyasu, K.8
Wada, C.9
-
52
-
-
18144423141
-
Polyribosome binding by GCN1 is required for full activation of eukaryotic translation initiation factor 2α kinase GCN2 during amino acid starvation
-
Sattlegger, E., and A. G. Hinnebusch. 2005. Polyribosome binding by GCN1 is required for full activation of eukaryotic translation initiation factor 2α kinase GCN2 during amino acid starvation. J. Biol. Chem. 280:16514-16521.
-
(2005)
J. Biol. Chem
, vol.280
, pp. 16514-16521
-
-
Sattlegger, E.1
Hinnebusch, A.G.2
-
53
-
-
0034407117
-
Separate domains in GCN1 for binding protein kinase GCN2 and ribosomes are required for GCN2 activation in amino acid-starved cells
-
Sattlegger, E., and A. G. Hinnebusch. 2000. Separate domains in GCN1 for binding protein kinase GCN2 and ribosomes are required for GCN2 activation in amino acid-starved cells. EMBO J. 19:6622-6633.
-
(2000)
EMBO J
, vol.19
, pp. 6622-6633
-
-
Sattlegger, E.1
Hinnebusch, A.G.2
-
54
-
-
3142718197
-
YIH1 is an actin-binding protein that inhibits protein kinase GCN2 and impairs general amino acid control when overexpressed
-
Sattlegger, E., M. J. Swanson, E. A. Ashcraft, J. L. Jennings, R. A. Fekete, A. J. Link, and A. G. Hinnebusch. 2004. YIH1 is an actin-binding protein that inhibits protein kinase GCN2 and impairs general amino acid control when overexpressed. J. Biol. Chem. 279:29952-29962.
-
(2004)
J. Biol. Chem
, vol.279
, pp. 29952-29962
-
-
Sattlegger, E.1
Swanson, M.J.2
Ashcraft, E.A.3
Jennings, J.L.4
Fekete, R.A.5
Link, A.J.6
Hinnebusch, A.G.7
-
55
-
-
0038044717
-
Sequential protein association with nascent 60S ribosomal particles
-
Saveanu, C., A. Namane, P. E. Gleizes, A. Lebreton, J. C. Rousselle, J. Noaillac-Depeyre, N. Gas, A. Jacquier, and M. Fromont-Racine. 2003. Sequential protein association with nascent 60S ribosomal particles. Mol. Cell. Biol. 23:4449-4460.
-
(2003)
Mol. Cell. Biol
, vol.23
, pp. 4449-4460
-
-
Saveanu, C.1
Namane, A.2
Gleizes, P.E.3
Lebreton, A.4
Rousselle, J.C.5
Noaillac-Depeyre, J.6
Gas, N.7
Jacquier, A.8
Fromont-Racine, M.9
-
56
-
-
0027066894
-
-
Sazuka, T., Y. Tomooka, Y. Ikawa, M. Noda, and S. Kumar. 1992. DRG: a novel developmentally regulated GTP-binding protein. Biochem. Biophys. Res. Commun. 189:363-370.
-
Sazuka, T., Y. Tomooka, Y. Ikawa, M. Noda, and S. Kumar. 1992. DRG: a novel developmentally regulated GTP-binding protein. Biochem. Biophys. Res. Commun. 189:363-370.
-
-
-
-
57
-
-
0034602848
-
Modulation of RNA function by aminoglycoside antibiotics
-
Schroeder, R., C. Waldsich, and H. Wank. 2000. Modulation of RNA function by aminoglycoside antibiotics. EMBO J. 19:1-9.
-
(2000)
EMBO J
, vol.19
, pp. 1-9
-
-
Schroeder, R.1
Waldsich, C.2
Wank, H.3
-
58
-
-
0032765908
-
Obg, an essential GTP binding protein of Bacillus subtilis, is necessary for stress activation of transcription factor sigma(B)
-
Scott, J. M., and W. G. Haldenwang. 1999. Obg, an essential GTP binding protein of Bacillus subtilis, is necessary for stress activation of transcription factor sigma(B). J. Bacteriol. 181:4653-4660.
-
(1999)
J. Bacteriol
, vol.181
, pp. 4653-4660
-
-
Scott, J.M.1
Haldenwang, W.G.2
-
59
-
-
0034060502
-
The Bacillus subtilis GTP binding protein Obg and regulators of the sigma(B) stress response transcription factor cofractionate with ribosomes
-
Scott, J. M., J. Ju, T. Mitchell, and W. G. Haldenwang. 2000. The Bacillus subtilis GTP binding protein Obg and regulators of the sigma(B) stress response transcription factor cofractionate with ribosomes. J. Bacteriol. 182: 2771-2777.
-
(2000)
J. Bacteriol
, vol.182
, pp. 2771-2777
-
-
Scott, J.M.1
Ju, J.2
Mitchell, T.3
Haldenwang, W.G.4
-
60
-
-
29044442633
-
The Vibrio harveyi GTPase CgtAV is essential and is associated with the 50S ribosomal subunit
-
Sikora, A. E., R. Zielke, K. Datta, and J. R. Maddock. 2006. The Vibrio harveyi GTPase CgtAV is essential and is associated with the 50S ribosomal subunit. J. Bacteriol. 188:1205-1210.
-
(2006)
J. Bacteriol
, vol.188
, pp. 1205-1210
-
-
Sikora, A.E.1
Zielke, R.2
Datta, K.3
Maddock, J.R.4
-
61
-
-
0036237999
-
Overexpression of two different GTPases rescues a null mutation in a heat-induced rRNA methyltransferase
-
Tan, J., U. Jakob, and J. C. Bardwell. 2002. Overexpression of two different GTPases rescues a null mutation in a heat-induced rRNA methyltransferase. J. Bacteriol. 184:2692-2698.
-
(2002)
J. Bacteriol
, vol.184
, pp. 2692-2698
-
-
Tan, J.1
Jakob, U.2
Bardwell, J.C.3
-
62
-
-
0024977417
-
Elevated recombination rates in transcriptionally active DNA
-
Thomas, B. J., and R. Rothstein. 1989. Elevated recombination rates in transcriptionally active DNA. Cell 56:619-630.
-
(1989)
Cell
, vol.56
, pp. 619-630
-
-
Thomas, B.J.1
Rothstein, R.2
-
63
-
-
0027424777
-
Isolation and characterization of autophagy- defective mutants of Saccharomyces cerevisiae
-
Tsukada, M., and Y. Ohsumi. 1993. Isolation and characterization of autophagy- defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333:169- 174.
-
(1993)
FEBS Lett
, vol.333
, pp. 169-174
-
-
Tsukada, M.1
Ohsumi, Y.2
-
64
-
-
0034628508
-
A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae
-
Uetz, P., L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson, J. R. Knight, D. Lockshon, V. Narayan, M. Srinivasan, P. Pochart, A. Qureshi-Emili, Y. Li, B. Godwin, D. Conover, T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnston, S. Fields, and J. M. Rothberg. 2000. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623- 627.
-
(2000)
Nature
, vol.403
, pp. 623-627
-
-
Uetz, P.1
Giot, L.2
Cagney, G.3
Mansfield, T.A.4
Judson, R.S.5
Knight, J.R.6
Lockshon, D.7
Narayan, V.8
Srinivasan, M.9
Pochart, P.10
Qureshi-Emili, A.11
Li, Y.12
Godwin, B.13
Conover, D.14
Kalbfleisch, T.15
Vijayadamodar, G.16
Yang, M.17
Johnston, M.18
Fields, S.19
Rothberg, J.M.20
more..
-
65
-
-
0029001571
-
GCN20, a novel ATP binding cassette protein, and GCN1 reside in a complex that mediates activation of the eIF-2α kinase GCN2 in amino acidstarved cells
-
Vazquez de Aldana, C. R., M. J. Marton, and A. G. Hinnebusch. 1995. GCN20, a novel ATP binding cassette protein, and GCN1 reside in a complex that mediates activation of the eIF-2α kinase GCN2 in amino acidstarved cells. EMBO J. 14:3184-3199.
-
(1995)
EMBO J
, vol.14
, pp. 3184-3199
-
-
Vazquez de Aldana, C.R.1
Marton, M.J.2
Hinnebusch, A.G.3
-
66
-
-
0031000833
-
Ribosomal protein L32 of Saccharomyces cerevisiae influences both the splicing of its own transcript and the processing of rRNA
-
Vilardell, J., and J. R. Warner. 1997. Ribosomal protein L32 of Saccharomyces cerevisiae influences both the splicing of its own transcript and the processing of rRNA. Mol. Cell. Biol. 17:1959-1965.
-
(1997)
Mol. Cell. Biol
, vol.17
, pp. 1959-1965
-
-
Vilardell, J.1
Warner, J.R.2
-
67
-
-
0035197028
-
EBP2 is a member of the yeast RRB regulon, a transcriptionally coregulated set of genes that are required for ribosome and rRNA biosynthesis
-
Wade, C., K. A. Shea, R. V. Jensen, and M. A. McAlear. 2001. EBP2 is a member of the yeast RRB regulon, a transcriptionally coregulated set of genes that are required for ribosome and rRNA biosynthesis. Mol. Cell. Biol. 21:8638-8650.
-
(2001)
Mol. Cell. Biol
, vol.21
, pp. 8638-8650
-
-
Wade, C.1
Shea, K.A.2
Jensen, R.V.3
McAlear, M.A.4
-
68
-
-
0029006391
-
The histidyl-tRNA synthetaserelated sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids
-
Wek, S. A., S. Zhu, and R. C. Wek. 1995. The histidyl-tRNA synthetaserelated sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol. Cell. Biol. 15:4497-4506.
-
(1995)
Mol. Cell. Biol
, vol.15
, pp. 4497-4506
-
-
Wek, S.A.1
Zhu, S.2
Wek, R.C.3
-
69
-
-
0032830481
-
Evolution of aminoacyl-tRNA synthetases: Analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events
-
Wolf, Y. I., L. Aravind, N. V. Grishin, and E. V. Koonin. 1999. Evolution of aminoacyl-tRNA synthetases: analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res. 9:689-710.
-
(1999)
Genome Res
, vol.9
, pp. 689-710
-
-
Wolf, Y.I.1
Aravind, L.2
Grishin, N.V.3
Koonin, E.V.4
-
70
-
-
3843074167
-
The Escherichia coli GTPase CgtAE cofractionates with the 50S ribosomal subunit and interacts with SpoT, a ppGpp synthetase/hydrolase
-
Wout, P., K. Pu, S. M. Sullivan, V. Reese, S. Zhou, B. Lin, and J. R. Maddock. 2004. The Escherichia coli GTPase CgtAE cofractionates with the 50S ribosomal subunit and interacts with SpoT, a ppGpp synthetase/hydrolase. J. Bacteriol. 186:5249-5257.
-
(2004)
J. Bacteriol
, vol.186
, pp. 5249-5257
-
-
Wout, P.1
Pu, K.2
Sullivan, S.M.3
Reese, V.4
Zhou, S.5
Lin, B.6
Maddock, J.R.7
-
71
-
-
0025992789
-
Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations
-
Xiao, H., M. Kalman, K. Ikehara, S. Zemel, G. Glaser, and M. Cashel. 1991. Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J. Biol. Chem. 266:5980- 5990.
-
(1991)
J. Biol. Chem
, vol.266
, pp. 5980-5990
-
-
Xiao, H.1
Kalman, M.2
Ikehara, K.3
Zemel, S.4
Glaser, G.5
Cashel, M.6
|