-
1
-
-
0036270751
-
Regulated transport of the glucose transporter GLUT4
-
Bryant, N. J., Govers, R., and James, D. E. (2002) Regulated transport of the glucose transporter GLUT4. Nat. Rev. Mol. Cell. Biol. 3, 267-277.
-
(2002)
Nat. Rev. Mol. Cell. Biol.
, vol.3
, pp. 267-277
-
-
Bryant, N.J.1
Govers, R.2
James, D.E.3
-
2
-
-
0034856812
-
Intracellular mechanisms underlying increases in glucose uptake in response to insulin or exercise in skeletal muscle
-
Ryder, J. W., Chibalin, A. V., and Zierath, J. R. (2001) Intracellular mechanisms underlying increases in glucose uptake in response to insulin or exercise in skeletal muscle. Acta. Physiol. Scand. 171, 249-257.
-
(2001)
Acta. Physiol. Scand.
, vol.171
, pp. 249-257
-
-
Ryder, J.W.1
Chibalin, A.V.2
Zierath, J.R.3
-
3
-
-
0022520668
-
Leg glucose uptake during maximal dynamic exercise in humans
-
Katz, A., Broberg, S., Sahlin, K., and Wahren, J. (1986) Leg glucose uptake during maximal dynamic exercise in humans. Am. J. Physiol. 251, E65-E70.
-
(1986)
Am. J. Physiol.
, vol.251
-
-
Katz, A.1
Broberg, S.2
Sahlin, K.3
Wahren, J.4
-
4
-
-
0035449518
-
Glucose, exercise and insulin: Emerging concepts
-
DOI 10.1111/j.1469-7793.2001.t01-2-00313.x
-
Richter, E. A., Derave, W., and Wojtaszewski JFP (2001) Glucose, exercise and insulin: emerging concepts. J. Physiol. 535, 313-322. (Pubitemid 32825671)
-
(2001)
Journal of Physiology
, vol.535
, Issue.2
, pp. 313-322
-
-
Richter, E.A.1
Derave, W.2
Wojtaszewski, J.F.P.3
-
5
-
-
0037375970
-
Regulation of 5′ AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle
-
Wojtaszewski, J. F., MacDonald, C., Nielsen, J. N., Hellsten, Y., Hardie, D. G., Kemp, B. E., Kiens, B., and Richter, E. A. (2003) Regulation of 5′ AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 284, E813-E822.
-
(2003)
Am. J. Physiol. Endocrinol. Metab.
, vol.284
-
-
Wojtaszewski, J.F.1
MacDonald, C.2
Nielsen, J.N.3
Hellsten, Y.4
Hardie, D.G.5
Kemp, B.E.6
Kiens, B.7
Richter, E.A.8
-
6
-
-
0028892992
-
Influence of muscle glycogen on glycogenolysis and glucose uptake during exercise in humans
-
Hargreaves, M., McConell, G., and Proietto, J. (1995) Influence of muscle glycogen on glycogenolysis and glucose uptake during exercise in humans. J. Appl. Physiol. 78, 288-292.
-
(1995)
J. Appl. Physiol.
, vol.78
, pp. 288-292
-
-
Hargreaves, M.1
McConell, G.2
Proietto, J.3
-
7
-
-
0033855903
-
Dissociation of AMP-activated protein kinase activation and glucose transport in contracting slow-twitch muscle
-
Derave, W., Ai, H., Ihlemann, J., Witters, L. A., Kristiansen, S., Richter, E. A., and Ploug, T. (2000) Dissociation of AMP-activated protein kinase activation and glucose transport in contracting slow-twitch muscle. Diabetes. 49, 1281-1287. (Pubitemid 30624226)
-
(2000)
Diabetes
, vol.49
, Issue.8
, pp. 1281-1287
-
-
Derave, W.1
Ai, H.2
Ihlemann, J.3
Witters, L.A.4
Kristiansen, S.5
Richter, E.A.6
Ploug, T.7
-
8
-
-
0031717105
-
The AMP-activated/SNF1 protein kinase subfamily: Metabolic sensors of the eukaryotic cell?
-
Hardie, D. G., Carling, D., and Carlson, M. (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 67, 821-855.
-
(1998)
Annu. Rev. Biochem.
, vol.67
, pp. 821-855
-
-
Hardie, D.G.1
Carling, D.2
Carlson, M.3
-
9
-
-
0035319220
-
Effect of force development on contraction induced glucose transport in fast twitch rat muscle
-
Ihlemann, J., Ploug, T., and Galbo, H. (2001) Effect of force development on contraction induced glucose transport in fast twitch rat muscle. Acta. Physiol. Scand. 171, 439-444.
-
(2001)
Acta. Physiol. Scand.
, vol.171
, pp. 439-444
-
-
Ihlemann, J.1
Ploug, T.2
Galbo, H.3
-
10
-
-
33847625814
-
Mechanical load plays little role in contraction-mediated glucose transport in mouse skeletal muscle
-
DOI 10.1113/jphysiol.2006.123372
-
Sandstrom, M. E., Zhang, S. J., Westerblad, H., and Katz, A. (2007) Mechanical load plays little role in contraction-mediated glucose transport in mouse skeletal muscle. J. Physiol. 579, 527-534. (Pubitemid 46351767)
-
(2007)
Journal of Physiology
, vol.579
, Issue.2
, pp. 527-534
-
-
Sandstrom, M.E.1
Zhang, S.-J.2
Westerblad, H.3
Katz, A.4
-
11
-
-
33646104933
-
Effect of exercise intensity and hypoxia on skeletal muscle AMPK signaling and substrate metabolism in humans
-
Wadley, G. D., Lee-Young, R. S., Canny, B. J., Wasuntarawat, C., Chen, Z. P., Hargreaves, M., Kemp, B. E., and McConell, G. K. (2006) Effect of exercise intensity and hypoxia on skeletal muscle AMPK signaling and substrate metabolism in humans. Am. J. Physiol. Endocrinol. Metab. 290, E694-E702.
-
(2006)
Am. J. Physiol. Endocrinol. Metab.
, vol.290
-
-
Wadley, G.D.1
Lee-Young, R.S.2
Canny, B.J.3
Wasuntarawat, C.4
Chen, Z.P.5
Hargreaves, M.6
Kemp, B.E.7
McConell, G.K.8
-
12
-
-
0034306362
-
Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle
-
Wojtaszewski, J. F. P., Nielsen, P., Hansen, B. F., Richter, E. A., and Kiens, B. (2000) Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. J. Physiol. 528, 221-226.
-
(2000)
J. Physiol.
, vol.528
, pp. 221-226
-
-
Wojtaszewski, J.F.P.1
Nielsen, P.2
Hansen, B.F.3
Richter, E.A.4
Kiens, B.5
-
13
-
-
0034999425
-
AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle
-
Musi, N., Hayashi, T., Fujii, N., Hirshman, M. F., Witters, L. A., and Goodyear, L. J. (2001) AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 280, E677-E684.
-
(2001)
Am. J. Physiol. Endocrinol. Metab.
, vol.280
-
-
Musi, N.1
Hayashi, T.2
Fujii, N.3
Hirshman, M.F.4
Witters, L.A.5
Goodyear, L.J.6
-
14
-
-
47749126210
-
AMPK alpha1 activation is required for stimulation of glucose uptake by twitch contraction, but not by H2O2, in mouse skeletal muscle
-
Jensen, T. E., Schjerling, P., Viollet, B., Wojtaszewski, J. F., and Richter, E. A. (2008) AMPK alpha1 activation is required for stimulation of glucose uptake by twitch contraction, but not by H2O2, in mouse skeletal muscle. PLoS One. 3, e2102.
-
(2008)
PLoS One
, vol.3
-
-
Jensen, T.E.1
Schjerling, P.2
Viollet, B.3
Wojtaszewski, J.F.4
Richter, E.A.5
-
15
-
-
0031849916
-
Evidence for 5′ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport
-
Hayashi, T., Hirshman, M. F., Kurth, E. J., Winder, W. W., and Goodyear, L. J. (1998) Evidence for 5′ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes. 47, 1369-1373.
-
(1998)
Diabetes
, vol.47
, pp. 1369-1373
-
-
Hayashi, T.1
Hirshman, M.F.2
Kurth, E.J.3
Winder, W.W.4
Goodyear, L.J.5
-
16
-
-
0032966874
-
Effect of AMPK activation on muscle glucose metabolism in conscious rats
-
Bergeron, R., Russell, R. R., III, Young, L. H., Ren, J-M., Marcucci, M., Lee, A., and Shulman, G. I. (1999) Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am. J. Physiol. Endocrinol. Metab. 276, E938-E944.
-
(1999)
Am. J. Physiol. Endocrinol. Metab.
, vol.276
-
-
Bergeron, R.1
Russell III, R.R.2
Young, L.H.3
Ren, J.-M.4
Marcucci, M.5
Lee, A.6
Shulman, G.I.7
-
17
-
-
0035947235
-
A role for AMP-activated protein kinase in contraction- And hypoxia-regulated glucose transport in skeletal muscle
-
Mu, J., Brozinick, J. T., Valladares, O., Bucan, M., and Birnbaum, M. J. (2001) A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol. Cell. 7, 1085-1094.
-
(2001)
Mol. Cell.
, vol.7
, pp. 1085-1094
-
-
Mu, J.1
Brozinick, J.T.2
Valladares, O.3
Bucan, M.4
Birnbaum, M.J.5
-
18
-
-
28244466267
-
AMP-activated protein kinase {alpha}2 activity is not essential for contraction- And hyperosmolarity-induced glucose transport in skeletal muscle
-
Fujii, N., Hirshman, M. F., Kane, E. M., Ho, R. C., Peter, L. E., Seifert, M. M., and Goodyear, L. J. (2005) AMP-activated protein kinase {alpha}2 activity is not essential for contraction- and hyperosmolarity-induced glucose transport in skeletal muscle. J. Biol. Chem. 280, 39033-39041.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 39033-39041
-
-
Fujii, N.1
Hirshman, M.F.2
Kane, E.M.3
Ho, R.C.4
Peter, L.E.5
Seifert, M.M.6
Goodyear, L.J.7
-
19
-
-
34247603071
-
Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction
-
Jensen, T. E., Rose, A. J., Jorgensen, S. B., Brandt, N., Schjerling, P., Wojtaszewski, J. F., and Richter, E. A. (2007) Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction. Am. J. Physiol. Endocrinol. Metab. 292, E1308-E1317.
-
(2007)
Am. J. Physiol. Endocrinol. Metab.
, vol.292
-
-
Jensen, T.E.1
Rose, A.J.2
Jorgensen, S.B.3
Brandt, N.4
Schjerling, P.5
Wojtaszewski, J.F.6
Richter, E.A.7
-
20
-
-
0345832116
-
Knockout of the α2 but not α1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-β-4- ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle
-
Jorgensen, S. B., Viollet, B., Andreelli, F., Frosig, C., Birk, J. B., Schjerling, P., Vaulont, S., Richter, E. A., and Wojtaszewski JFP (2004) Knockout of the α2 but not α1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. J. Biol. Chem. 279, 1070-1079.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 1070-1079
-
-
Jorgensen, S.B.1
Viollet, B.2
Andreelli, F.3
Frosig, C.4
Birk, J.B.5
Schjerling, P.6
Vaulont, S.7
Richter, E.A.8
Wojtaszewski, J.F.P.9
-
21
-
-
50349099779
-
Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic
-
Sakamoto, K. and Holman, G. D. (2008) Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am. J. Physiol. Endocrinol. Metab. 295, E29-E37.
-
(2008)
Am. J. Physiol. Endocrinol. Metab.
, vol.295
-
-
Sakamoto, K.1
Holman, G.D.2
-
22
-
-
20044370885
-
Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction
-
DOI 10.1038/sj.emboj.7600667
-
Sakamoto, K., McCarthy, A., Smith, D., Green, K. A., Grahame Hardie, D., Ashworth, A., and Alessi, D. R. (2005) Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. Embo. J. 24, 1810-1820. (Pubitemid 40769500)
-
(2005)
EMBO Journal
, vol.24
, Issue.10
, pp. 1810-1820
-
-
Sakamoto, K.1
McCarthy, A.2
Smith, D.3
Green, K.A.4
Hardie, D.G.5
Ashworth, A.6
Alessi, D.R.7
-
23
-
-
0014050627
-
Enhanced permeability to sugar associated with muscle contraction: Studies of the role of Ca++
-
Holloszy, J. O. and Narahara, H. T. (1967) Enhanced permeability to sugar associated with muscle contraction: studies of the role of Ca++. J. Gen. Physiol. 50, 551-562.
-
(1967)
J. Gen. Physiol.
, vol.50
, pp. 551-562
-
-
Holloszy, J.O.1
Narahara, H.T.2
-
24
-
-
0842288475
-
Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions
-
Wright, D. C., Hucker, K. A., Holloszy, J. O., and Han, D. H. (2004) Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes. 53, 330-335.
-
(2004)
Diabetes
, vol.53
, pp. 330-335
-
-
Wright, D.C.1
Hucker, K.A.2
Holloszy, J.O.3
Han, D.H.4
-
25
-
-
19444387591
-
Contraction- and hypoxia-stimulated glucose transport is mediated by a Ca2+-dependent mechanism in slow-twitch rat soleus muscle
-
Wright, D. C., Geiger, P. C., Holloszy, J. O., and Han, D-H. (2005) Contraction- and hypoxia-stimulated glucose transport is mediated by a Ca2+-dependent mechanism in slow-twitch rat soleus muscle. Am. J. Physiol. Endocrinol. Metab. 288, E1062-E1066.
-
(2005)
Am. J. Physiol. Endocrinol. Metab.
, vol.288
-
-
Wright, D.C.1
Geiger, P.C.2
Holloszy, J.O.3
Han, D.-H.4
-
26
-
-
0028604620
-
Nitric oxide release is present from incubated skeletal muscle preparations
-
Balon, T. W. and Nadler, J. L. (1994) Nitric oxide release is present from incubated skeletal muscle preparations. J. Appl. Physiol. 77, 2519-2521.
-
(1994)
J. Appl. Physiol.
, vol.77
, pp. 2519-2521
-
-
Balon, T.W.1
Nadler, J.L.2
-
27
-
-
36849093422
-
Local nitric oxide synthase inhibition reduces skeletal muscle glucose uptake but not capillary blood flow during in situ muscle contraction in rats
-
DOI 10.2337/db07-0745
-
Ross, R. M., Wadley, G. D., Clark, M. G., Rattigan, S., and McConell, G. K. (2007) Local nitric oxide synthase inhibition reduces skeletal muscle glucose uptake but not capillary blood flow during in situ muscle contraction in rats. Diabetes. 56, 2885-2892. (Pubitemid 350223622)
-
(2007)
Diabetes
, vol.56
, Issue.12
, pp. 2885-2892
-
-
Ross, R.M.1
Wadley, G.D.2
Clark, M.G.3
Rattigan, S.4
McConell, G.K.5
-
28
-
-
0031026488
-
Evidence that nitric oxide increases glucose transport in skeletal muscle
-
Balon, T. W. and Nadler, J. L. (1997) Evidence that nitric oxide increases glucose transport in skeletal muscle. J. Appl. Physiol. 82, 359-363.
-
(1997)
J. Appl. Physiol.
, vol.82
, pp. 359-363
-
-
Balon, T.W.1
Nadler, J.L.2
-
29
-
-
0035140193
-
Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle
-
Higaki, Y., Hirshman, M. F., Fujii, N., and Goodyear, L. J. (2001) Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle. Diabetes. 50, 241-247. (Pubitemid 32127278)
-
(2001)
Diabetes
, vol.50
, Issue.2
, pp. 241-247
-
-
Higaki, Y.1
Hirshman, M.F.2
Fujii, N.3
Goodyear, L.J.4
-
30
-
-
0030857901
-
Exercise-stimulated glucose transport in skeletal muscle is nitric oxide dependent
-
Roberts, C. K., Barnard, R. J., Scheck, S. H., and Balon, T. W. (1997) Exercise-stimulated glucose transport in skeletal muscle is nitric oxide dependent. Am. J. Physiol. Endocrinol. Metab. 273, E220-E225.
-
(1997)
Am. J. Physiol. Endocrinol. Metab.
, vol.273
-
-
Roberts, C.K.1
Barnard, R.J.2
Scheck, S.H.3
Balon, T.W.4
-
31
-
-
33645641546
-
Does nitric oxide regulate skeletal muscle glucose uptake during exercise?
-
McConell, G. K. and Kingwell, B. A. (2006) Does nitric oxide regulate skeletal muscle glucose uptake during exercise? Exerc. Sport. Sci. Rev. 34, 36-41.
-
(2006)
Exerc. Sport. Sci. Rev.
, vol.34
, pp. 36-41
-
-
McConell, G.K.1
Kingwell, B.A.2
-
32
-
-
0036288590
-
Contrasting effects of exercise and NOS inhibition on tissue-specific fatty acid and glucose uptake in mice
-
Rottman, J. N., Bracy, D., Malabanan, C., Yue, Z., Clanton, J., and Wasserman, D. H. (2002) Contrasting effects of exercise and NOS inhibition on tissue-specific fatty acid and glucose uptake in mice. Am. J. Physiol. Endocrinol. Metab. 283, E116-E123.
-
(2002)
Am. J. Physiol. Endocrinol. Metab.
, vol.283
-
-
Rottman, J.N.1
Bracy, D.2
Malabanan, C.3
Yue, Z.4
Clanton, J.5
Wasserman, D.H.6
-
33
-
-
0036326326
-
Nitric oxide synthase inhibition reduces glucose uptake during exercise in individuals with type 2 diabetes more than in control subjects
-
Kingwell, B. A., Formosa, M., Muhlmann, M., Bradley, S. J., and McConell, G. K. (2002) Nitric oxide synthase inhibition reduces glucose uptake during exercise in individuals with type 2 diabetes more than in control subjects. Diabetes. 51, 2572-2580. (Pubitemid 34827409)
-
(2002)
Diabetes
, vol.51
, Issue.8
, pp. 2572-2580
-
-
Kingwell, B.A.1
Formosa, M.2
Muhlmann, M.3
Bradley, S.J.4
McConell, G.K.5
-
34
-
-
0032880516
-
Nitric oxide synthase inhibition reduces leg glucose uptake but not blood flow during dynamic exercise in humans
-
Bradley, S. J., Kingwell, B. A., and McConell, G. K. (1999) Nitric oxide synthase inhibition reduces leg glucose uptake but not blood flow during dynamic exercise in humans. Diabetes. 48, 1815-1821.
-
(1999)
Diabetes
, vol.48
, pp. 1815-1821
-
-
Bradley, S.J.1
Kingwell, B.A.2
McConell, G.K.3
-
35
-
-
0031962949
-
Evidence for altered sensitivity of the nitric oxide/cGMP signalling cascade in insulin-resistant skeletal muscle
-
Young, M. E. and Leighton, B. (1998) Evidence for altered sensitivity of the nitric oxide/cGMP signalling cascade in insulin-resistant skeletal muscle. Biochem. J. 329, 73-79.
-
(1998)
Biochem. J.
, vol.329
, pp. 73-79
-
-
Young, M.E.1
Leighton, B.2
-
36
-
-
0032489498
-
Fuel oxidation in skeletal muscle is increased by nitric oxide/cGMP - Evidence for involvement of cGMP-dependent protein kinase
-
Young, M. E. and Leighton, B. (1998) Fuel oxidation in skeletal muscle is increased by nitric oxide/cGMP - evidence for involvement of cGMP-dependent protein kinase. FEBS. Lett. 424, 79-83.
-
(1998)
FEBS. Lett.
, vol.424
, pp. 79-83
-
-
Young, M.E.1
Leighton, B.2
-
37
-
-
0347560375
-
nNOS and eNOS modulate cGMP formation and vascular response in contracting fast-twitch skeletal muscle
-
Lau, K. S., Grange, R. W., Isotani, E., Sarelius, I. H., Kamm, K. E., Huang, P. L. and Stull, J. T. (2000) nNOS and eNOS modulate cGMP formation and vascular response in contracting fast-twitch skeletal muscle. Physiol. Genomics. 2, 21-27.
-
(2000)
Physiol. Genomics
, vol.2
, pp. 21-27
-
-
Lau, K.S.1
Grange, R.W.2
Isotani, E.3
Sarelius, I.H.4
Kamm, K.E.5
Huang, P.L.6
Stull, J.T.7
-
38
-
-
0035139227
-
Physiology of nitric oxide in skeletal muscle
-
Stamler, J. S. and Meissner, G. (2001) Physiology of nitric oxide in skeletal muscle. Physiol. Rev. 81, 209-237.
-
(2001)
Physiol. Rev.
, vol.81
, pp. 209-237
-
-
Stamler, J.S.1
Meissner, G.2
-
39
-
-
0141706665
-
Activation of 5′-AMP-activated kinase is mediated through c-Src and phosphoinositide 3-kinase activity during hypoxia-reoxygenation of bovine aortic endothelial cells: Role of peroxynitrite
-
Zou, M-H., Hou, X-Y., Shi, C-M., Kirkpatick, S., Liu, F., Goldman, M. H., and Cohen, R. A. (2003) Activation of 5′-AMP-activated kinase is mediated through c-Src and phosphoinositide 3-kinase activity during hypoxia-reoxygenation of bovine aortic endothelial cells: role of peroxynitrite. J. Biol. Chem. 278, 34003-34010.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 34003-34010
-
-
Zou, M.-H.1
Hou, X.-Y.2
Shi, C.-M.3
Kirkpatick, S.4
Liu, F.5
Goldman, M.H.6
Cohen, R.A.7
-
40
-
-
50349088213
-
The nitric oxide-donating derivative of acetylsalicylic acid, NCX 4016, stimulates glucose transport and glucose transporters translocation in 3T3-L1 adipocytes
-
Kaddai, V., Gonzalez, T., Bolla, M., Le Marchand-Brustel, Y., and Cormont, M. (2008) The nitric oxide-donating derivative of acetylsalicylic acid, NCX 4016, stimulates glucose transport and glucose transporters translocation in 3T3-L1 adipocytes. Am. J. Physiol. Endocrinol. Metab. 295, E162-E169.
-
(2008)
Am. J. Physiol. Endocrinol. Metab.
, vol.295
-
-
Kaddai, V.1
Gonzalez, T.2
Bolla, M.3
Le Marchand-Brustel, Y.4
Cormont, M.5
-
41
-
-
37849040918
-
Free radicals and muscle fatigue: Of ROS, canaries, and the IOC
-
Reid, M. B. (2008) Free radicals and muscle fatigue: of ROS, canaries, and the IOC. Free. Radic. Biol. Med. 44, 169-179.
-
(2008)
Free. Radic. Biol. Med.
, vol.44
, pp. 169-179
-
-
Reid, M.B.1
-
42
-
-
37849035153
-
Free radicals generated by contracting muscle: By-products of metabolism or key regulators of muscle function?
-
Jackson, M. J. (2008) Free radicals generated by contracting muscle: by-products of metabolism or key regulators of muscle function? Free. Radic. Biol. Med. 44, 132-141.
-
(2008)
Free. Radic. Biol. Med.
, vol.44
, pp. 132-141
-
-
Jackson, M.J.1
-
43
-
-
37849002320
-
Modulation of skeletal muscle antioxidant defense by exercise: Role of redox signaling
-
Ji, L. L. (2008) Modulation of skeletal muscle antioxidant defense by exercise: role of redox signaling. Free. Radic. Biol. Med. 44, 142-152.
-
(2008)
Free. Radic. Biol. Med.
, vol.44
, pp. 142-152
-
-
Ji, L.L.1
-
44
-
-
34147185842
-
Modulation of glucose transport in skeletal muscle by reactive oxygen species
-
Katz, A. (2007) Modulation of glucose transport in skeletal muscle by reactive oxygen species. J. Appl. Physiol. 102, 1671-1676.
-
(2007)
J. Appl. Physiol.
, vol.102
, pp. 1671-1676
-
-
Katz, A.1
-
45
-
-
0025256926
-
Exercise increases susceptibility of muscle glucose transport to activation by various stimuli
-
Cartee, G. D. and Holloszy, J. O. (1990) Exercise increases susceptibility of muscle glucose transport to activation by various stimuli. Am. J. Physiol. Endocrinol. Metab. 258, E390-E393.
-
(1990)
Am. J. Physiol. Endocrinol. Metab.
, vol.258
-
-
Cartee, G.D.1
Holloszy, J.O.2
-
46
-
-
33746810466
-
Role of reactive oxygen species in contraction-mediated glucose transport in mouse skeletal muscle
-
DOI 10.1113/jphysiol.2006.110601
-
Sandstrom, M. E., Zhang, S. J., Bruton, J., Silva, J. P., Reid, M. B., Westerblad, H., and Katz, A. (2006) Role of reactive oxygen species in contraction-mediated glucose transport in mouse skeletal muscle. J. Physiol. 575, 251-262. (Pubitemid 44178142)
-
(2006)
Journal of Physiology
, vol.575
, Issue.1
, pp. 251-262
-
-
Sandstrom, M.E.1
Zhang, S.-J.2
Bruton, J.3
Silva, J.P.4
Reid, M.B.5
Westerblad, H.6
Katz, A.7
-
47
-
-
45549104269
-
Oxidative stress stimulates skeletal muscle glucose uptake through a phosphatidylinositol 3-kinase-dependent pathway
-
Higaki, Y., Mikami, T., Fujii, N., Hirshman, M. F., Koyama, K., Seino, T., Tanaka, K., and Goodyear, L. J. (2008) Oxidative stress stimulates skeletal muscle glucose uptake through a phosphatidylinositol 3-kinase-dependent pathway. Am. J. Physiol. Endocrinol. Metab. 294, E889-E897.
-
(2008)
Am. J. Physiol. Endocrinol. Metab.
, vol.294
-
-
Higaki, Y.1
Mikami, T.2
Fujii, N.3
Hirshman, M.F.4
Koyama, K.5
Seino, T.6
Tanaka, K.7
Goodyear, L.J.8
-
48
-
-
3042701605
-
Possible involvement of the α1 isoform of 5′ AMP-activated protein kinase in oxidative stress-stimulated glucose transport in skeletal muscle
-
Toyoda, T., Hayashi, T., Miyamoto, L., Yonemitsu, S., Nakano, M., Tanaka, S., Ebihara, K., Masuzaki, H., Hosoda, K., Inoue, G., Otaka, A., Sato, K., Fushiki, T., and Nakao, K. (2004) Possible involvement of the α1 isoform of 5′ AMP-activated protein kinase in oxidative stress-stimulated glucose transport in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 287, E166-E173.
-
(2004)
Am. J. Physiol. Endocrinol. Metab.
, vol.287
-
-
Toyoda, T.1
Hayashi, T.2
Miyamoto, L.3
Yonemitsu, S.4
Nakano, M.5
Tanaka, S.6
Ebihara, K.7
Masuzaki, H.8
Hosoda, K.9
Inoue, G.10
Otaka, A.11
Sato, K.12
Fushiki, T.13
Nakao, K.14
|