메뉴 건너뛰기




Volumn 60, Issue 2, 2009, Pages 145-154

Genetic basis for osmosensitivity and genetic instability of the wine yeast saccharomyces cerevisiae VIN7

Author keywords

Osmotic stress; Saccharomyces cerevisiae; Volatile acidity; Wine

Indexed keywords

SACCHAROMYCES CEREVISIAE; VITACEAE;

EID: 67650083100     PISSN: 00029254     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (8)

References (36)
  • 2
    • 0028302033 scopus 로고
    • GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway
    • Albertyn, J., S. Hohmann, J. M. Thevelein, and B. A. Prior. 1994. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol. Cell. Biol. 14:4135-4144.
    • (1994) Mol. Cell. Biol , vol.14 , pp. 4135-4144
    • Albertyn, J.1    Hohmann, S.2    Thevelein, J.M.3    Prior, B.A.4
  • 3
    • 0038818642 scopus 로고    scopus 로고
    • Aranda, A., M. Del Olmo. 2003. Response to acet al.dehyde stress in the yeast Saccharomyces cerevisiae involves a strain-dependent regulation of several ALD genes and is mediated by the general stress response pathway. Yeast 20:747-759.
    • Aranda, A., M. Del Olmo. 2003. Response to acet al.dehyde stress in the yeast Saccharomyces cerevisiae involves a strain-dependent regulation of several ALD genes and is mediated by the general stress response pathway. Yeast 20:747-759.
  • 5
    • 0024614329 scopus 로고
    • +) in acquired osmotolerance of Saccharomyces cerevisiae
    • +) in acquired osmotolerance of Saccharomyces cerevisiae. J. Bacteriol. 171:1087-1092.
    • (1989) J. Bacteriol , vol.171 , pp. 1087-1092
    • Blomberg, A.1    Adler, L.2
  • 6
    • 0042357079 scopus 로고    scopus 로고
    • Transcriptional, proteomic, and metabolic responses to lithium in galactose-grown yeast cells
    • Bro, C., B. Regenberg, G. Lagniel, J. Labarre, M. Montero-Lomeli, and J. Nielsen. 2003. Transcriptional, proteomic, and metabolic responses to lithium in galactose-grown yeast cells. J. Biol. Chem. 278:31141-32149.
    • (2003) J. Biol. Chem , vol.278 , pp. 31141-32149
    • Bro, C.1    Regenberg, B.2    Lagniel, G.3    Labarre, J.4    Montero-Lomeli, M.5    Nielsen, J.6
  • 7
    • 0020614458 scopus 로고
    • A theoretical analysis of NADPH production and consumption in yeasts
    • Bruinenberg, P. M., J. P. van Dijken, and W. A. Scheffers. 1983. A theoretical analysis of NADPH production and consumption in yeasts. J. Gen. Microbiol. 129:953-964.
    • (1983) J. Gen. Microbiol , vol.129 , pp. 953-964
    • Bruinenberg, P.M.1    van Dijken, J.P.2    Scheffers, W.A.3
  • 8
    • 11844256437 scopus 로고    scopus 로고
    • Impact of yeast strain on the production of acetic acid, glycerol, and the sensory attributes of icewine
    • Erasmus, D. J., M. Cliff, and H. J. J. van Vuuren. 2004. Impact of yeast strain on the production of acetic acid, glycerol, and the sensory attributes of icewine. Am. J. Enol. Vitic. 55:371-378.
    • (2004) Am. J. Enol. Vitic , vol.55 , pp. 371-378
    • Erasmus, D.J.1    Cliff, M.2    van Vuuren, H.J.J.3
  • 9
    • 0038665162 scopus 로고    scopus 로고
    • Genome-wide expression analysis: Metabolic adaptation of Saccharomyces cerevisiae to high sugar stress
    • Erasmus, D. J., G. K. van der Merwe, and H. J. J. van Vuuren. 2003. Genome-wide expression analysis: Metabolic adaptation of Saccharomyces cerevisiae to high sugar stress. FEMS Yeast Res. 3:375-399.
    • (2003) FEMS Yeast Res , vol.3 , pp. 375-399
    • Erasmus, D.J.1    van der Merwe, G.K.2    van Vuuren, H.J.J.3
  • 10
    • 0027496182 scopus 로고
    • Factors affecting acetic acid production by yeasts in strongly clarified grape musts
    • Garcia Moruno, E., C. Delfini, E. Pessione, and C. Giunta. 1993. Factors affecting acetic acid production by yeasts in strongly clarified grape musts. Microbios 74:249-256.
    • (1993) Microbios , vol.74 , pp. 249-256
    • Garcia Moruno, E.1    Delfini, C.2    Pessione, E.3    Giunta, C.4
  • 12
    • 0037173615 scopus 로고    scopus 로고
    • Functional profiling of the Saccharomyces cerevisiae genome
    • Giaever, G., et al. 2002. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387-391.
    • (2002) Nature , vol.418 , pp. 387-391
    • Giaever, G.1
  • 14
    • 0038529613 scopus 로고    scopus 로고
    • The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity
    • Grabowska, D., and A. Chelstowska. 2003. The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity. J. Biol. Chem. 278:13984-13988.
    • (2003) J. Biol. Chem , vol.278 , pp. 13984-13988
    • Grabowska, D.1    Chelstowska, A.2
  • 15
    • 0042208453 scopus 로고    scopus 로고
    • Functional genomics reveals relationships between the retrovirus-like Ty1 element and its host Saccharomyces cerevisiae
    • Griffith, J. L., L. E. Coleman, A. S. Raymond, S. G. Goodson, W. S. Pittard, C. Tsui, S. E. Devine. 2003. Functional genomics reveals relationships between the retrovirus-like Ty1 element and its host Saccharomyces cerevisiae. Genetics 164:867-879.
    • (2003) Genetics , vol.164 , pp. 867-879
    • Griffith, J.L.1    Coleman, L.E.2    Raymond, A.S.3    Goodson, S.G.4    Pittard, W.S.5    Tsui, C.6    Devine, S.E.7
  • 16
    • 0025776523 scopus 로고
    • Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast
    • Heitman, J, N. R. Movva, and M. N. Hall. 1991. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905-909.
    • (1991) Science , vol.253 , pp. 905-909
    • Heitman, J.1    Movva, N.R.2    Hall, M.N.3
  • 17
    • 38849180187 scopus 로고    scopus 로고
    • Glucose utilization of strains lacking PGI1 and expressing a transhydrogenase suggests differences in the pentose phosphate capacity among Saccharomyces cerevisiae strains
    • Heux, S., A. Cadiere, and S. Dequin. 2008. Glucose utilization of strains lacking PGI1 and expressing a transhydrogenase suggests differences in the pentose phosphate capacity among Saccharomyces cerevisiae strains. FEMS Yeast Res. 8:217-224.
    • (2008) FEMS Yeast Res , vol.8 , pp. 217-224
    • Heux, S.1    Cadiere, A.2    Dequin, S.3
  • 18
    • 0036282743 scopus 로고    scopus 로고
    • Osmotic stress signalling and osmoadaptation in yeasts
    • Hohmann, S. 2002. Osmotic stress signalling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66:300-372.
    • (2002) Microbiol. Mol. Biol. Rev , vol.66 , pp. 300-372
    • Hohmann, S.1
  • 19
    • 0002774633 scopus 로고    scopus 로고
    • Yeast and its importance to wine aroma-A review
    • Lambrechts, M. G., and I. S. Pretorius. 2000. Yeast and its importance to wine aroma-A review. S. Afr. J. Enol. Vitic. 21:97-129.
    • (2000) S. Afr. J. Enol. Vitic , vol.21 , pp. 97-129
    • Lambrechts, M.G.1    Pretorius, I.S.2
  • 22
    • 0029879360 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE)
    • Martinez-Pastor, M. T., G. Marchle, C. Schuller, A. Marchler-Bauer, H. Ruis, and F. Estruch. 1996. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 15:2227-2235.
    • (1996) EMBO J , vol.15 , pp. 2227-2235
    • Martinez-Pastor, M.T.1    Marchle, G.2    Schuller, C.3    Marchler-Bauer, A.4    Ruis, H.5    Estruch, F.6
  • 23
    • 0030784854 scopus 로고    scopus 로고
    • 2+-activated acet al.dehyde dehydrogenase. Yeast 13:1319-1327.
    • 2+-activated acet al.dehyde dehydrogenase. Yeast 13:1319-1327.
  • 24
    • 0032784969 scopus 로고    scopus 로고
    • A proposal for nomenclature of aldehyde dehydrogenases in Saccharomyces cerevisiae and characterization of the stress-inducible ALD2 and ALD3 genes
    • Navarro-Avino, J. P., R. Prasad, V. J. Miralles, R. M. Benito, and R. Serrano. 1999. A proposal for nomenclature of aldehyde dehydrogenases in Saccharomyces cerevisiae and characterization of the stress-inducible ALD2 and ALD3 genes. Yeast 15:829-842.
    • (1999) Yeast , vol.15 , pp. 829-842
    • Navarro-Avino, J.P.1    Prasad, R.2    Miralles, V.J.3    Benito, R.M.4    Serrano, R.5
  • 25
    • 0029920291 scopus 로고    scopus 로고
    • Purification and characterization of two isoenzymes of dl -glycerol-3- phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway
    • Norbeck, J., A. K. Pahlman, N. Akhtar, A. Blomberg, and L. Adler. 1996. Purification and characterization of two isoenzymes of dl -glycerol-3- phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 271:13875-13881.
    • (1996) J. Biol. Chem , vol.271 , pp. 13875-13881
    • Norbeck, J.1    Pahlman, A.K.2    Akhtar, N.3    Blomberg, A.4    Adler, L.5
  • 26
    • 0032915417 scopus 로고    scopus 로고
    • Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae
    • Powers, T., and P. Walter. 1999. Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol. Biol. Cell. 10:987-1000.
    • (1999) Mol. Biol. Cell , vol.10 , pp. 987-1000
    • Powers, T.1    Walter, P.2
  • 27
    • 0033856517 scopus 로고    scopus 로고
    • + acet al.dehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Appl. Environ. Microbiol. 66:3151-3159.
    • + acet al.dehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Appl. Environ. Microbiol. 66:3151-3159.
  • 28
    • 0344466725 scopus 로고    scopus 로고
    • Glycerol formation during wine fermentation is mainly linked to Gpd1p and is only partially controlled by the HOG pathway
    • Remize, F., B. Cambon, L. Barnavon, and S. Dequin. 2003. Glycerol formation during wine fermentation is mainly linked to Gpd1p and is only partially controlled by the HOG pathway. Yeast 20:1243-1253.
    • (2003) Yeast , vol.20 , pp. 1243-1253
    • Remize, F.1    Cambon, B.2    Barnavon, L.3    Dequin, S.4
  • 29
    • 0032939504 scopus 로고    scopus 로고
    • Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in byproduct formation and to a stimulation of fermentation rate in stationary phase
    • Remize, F., J. L. Roustan, J. M. Sablayrolles, P. Barre, and S. Dequin. 1999. Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in byproduct formation and to a stimulation of fermentation rate in stationary phase. Appl. Environ. Microbiol. 65:143-149.
    • (1999) Appl. Environ. Microbiol , vol.65 , pp. 143-149
    • Remize, F.1    Roustan, J.L.2    Sablayrolles, J.M.3    Barre, P.4    Dequin, S.5
  • 30
    • 0033025517 scopus 로고    scopus 로고
    • Different signalling pathways contribute to the control of GPD1 expression by osmotic stress in Saccharomyces cerevisiae
    • Rep, M., J. Albertyn, J. M. Thevelein, B. A. Prior, and S. Hohmann. 1999. Different signalling pathways contribute to the control of GPD1 expression by osmotic stress in Saccharomyces cerevisiae. Microbiology 145:715-727.
    • (1999) Microbiology , vol.145 , pp. 715-727
    • Rep, M.1    Albertyn, J.2    Thevelein, J.M.3    Prior, B.A.4    Hohmann, S.5
  • 31
    • 0034708436 scopus 로고    scopus 로고
    • The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes
    • Rep, M., M. Krantz, J. M. Thevelein, and S. Hohmann. 2000. The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J. Biol. Chem. 275:8290-300.
    • (2000) J. Biol. Chem , vol.275 , pp. 8290-8300
    • Rep, M.1    Krantz, M.2    Thevelein, J.M.3    Hohmann, S.4
  • 32
    • 0034644525 scopus 로고    scopus 로고
    • TOR, a central controller of cell growth
    • Schmelzle, T., and M. N. Hall. 2000. TOR, a central controller of cell growth. Cell 103:253-262.
    • (2000) Cell , vol.103 , pp. 253-262
    • Schmelzle, T.1    Hall, M.N.2
  • 33
    • 0028106363 scopus 로고
    • The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene
    • Schuller, C., J. L. Brewster, M. R. Alexander, M. C. Gustin, and H. Ruis. 1994. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J. 13:4382-4389.
    • (1994) EMBO J , vol.13 , pp. 4382-4389
    • Schuller, C.1    Brewster, J.L.2    Alexander, M.R.3    Gustin, M.C.4    Ruis, H.5
  • 34
    • 0025318231 scopus 로고
    • Physiology of Saccharomyces cerevisiae in anaerobic glucoselimited chemostat cultures
    • Verduyn, C., E. Postma, A. Scheffers, and J. P. van Dijken. 1990. Physiology of Saccharomyces cerevisiae in anaerobic glucoselimited chemostat cultures. J. Gen. Microbiol. 136:395-403.
    • (1990) J. Gen. Microbiol , vol.136 , pp. 395-403
    • Verduyn, C.1    Postma, E.2    Scheffers, A.3    van Dijken, J.P.4
  • 35
    • 0031882410 scopus 로고    scopus 로고
    • Molecular cloning, characterization, and potential roles of cytosolic and mitochondrial aldehyde dehydrogenases in ethanol metabolism in Saccharomyces cerevisiae
    • Wang, X. P., C. J. Mann, Y. L. Bai, L. Ni, and H. Weiner. 1998. Molecular cloning, characterization, and potential roles of cytosolic and mitochondrial aldehyde dehydrogenases in ethanol metabolism in Saccharomyces cerevisiae. J. Bacteriol. 180:822-830.
    • (1998) J. Bacteriol , vol.180 , pp. 822-830
    • Wang, X.P.1    Mann, C.J.2    Bai, Y.L.3    Ni, L.4    Weiner, H.5
  • 36
    • 0035844224 scopus 로고    scopus 로고
    • Transcript expression in Saccharomyces cerevisiae at high salinity
    • Yale, J., and H. J. Bohnert. 2001. Transcript expression in Saccharomyces cerevisiae at high salinity. J. Biol. Chem. 276:15996-16007.
    • (2001) J. Biol. Chem , vol.276 , pp. 15996-16007
    • Yale, J.1    Bohnert, H.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.