메뉴 건너뛰기




Volumn 3822 LNCS, Issue , 2005, Pages 279-289

Toward modeling lightweight intrusion detection system through correlation-based hybrid feature selection

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER CRIME; CORRELATION THEORY; ERROR ANALYSIS; FEATURE EXTRACTION; MARKOV PROCESSES; NEURAL NETWORKS;

EID: 33744922954     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11599548_24     Document Type: Conference Paper
Times cited : (35)

References (24)
  • 2
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and numeric class machine learning
    • Morgan Kaufmann Publishers Inc.
    • Hall, M.A.: Correlation-based Feature Selection for Discrete and Numeric Class Machine Learning. In: Proc. of the 17th Int. Conf. on Machine Learning. Morgan Kaufmann Publishers Inc. (2000) 359-366
    • (2000) Proc. of the 17th Int. Conf. on Machine Learning , pp. 359-366
    • Hall, M.A.1
  • 4
    • 0028496468 scopus 로고
    • Learning boolean concepts in the presence of many irrelevant features
    • Elsevier Science Publishers Ltd.
    • Almuallim, H., Dietterich, T.G.: Learning Boolean Concepts in the Presence of Many Irrelevant Features. Artificial Intelligence, Vol. 69, Elsevier Science Publishers Ltd. (1994) 279-305
    • (1994) Artificial Intelligence , vol.69 , pp. 279-305
    • Almuallim, H.1    Dietterich, T.G.2
  • 6
    • 84958740656 scopus 로고    scopus 로고
    • Anomaly detection enhanced classification in computer intrusion detection
    • Springer-Verlag, Berlin Heidelberg
    • Fugate, M., Gattiker, J.R.: Anomaly Detection Enhanced Classification in Computer Intrusion Detection. Lecture Notes in Computer Science, Vol. 2388. Springer-Verlag, Berlin Heidelberg (2002)
    • (2002) Lecture Notes in Computer Science , vol.2388
    • Fugate, M.1    Gattiker, J.R.2
  • 10
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Kluwer Academic Publishers
    • Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing Multiple Parameters for Support Vector Machines. Machine Learning, Vol. 46, Issue 1, Kluwer Academic Publishers. (2002) 131-159
    • (2002) Machine Learning , vol.46 , Issue.1 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 11
    • 0037382208 scopus 로고    scopus 로고
    • Evaluation of simple performance measures for tuning SVM hyperparameters
    • Duan, K., Keerthi, S.S., Poo, A.N.: Evaluation of Simple Performance Measures for Tuning SVM Hyperparameters. Neurocomputing, 51 (2003) 41-59
    • (2003) Neurocomputing , vol.51 , pp. 41-59
    • Duan, K.1    Keerthi, S.S.2    Poo, A.N.3
  • 12
    • 0141723181 scopus 로고    scopus 로고
    • KDD Cup 1999 Data, available, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
    • KDD Cup 1999 Data
  • 13
    • 84858893967 scopus 로고    scopus 로고
    • Open Source WEKA Project.: available http://www.cs.waikato.ac.nz/ml/weka/index.html
  • 14
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu, H., Vu, L.: Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Trans. on Knowledge and Data Engineering, 17(3), (2005) 1-12
    • (2005) IEEE Trans. on Knowledge and Data Engineering , vol.17 , Issue.3 , pp. 1-12
    • Liu, H.1    Vu, L.2
  • 15
    • 84943383590 scopus 로고    scopus 로고
    • Identifying important features for intrusion detection using support vector machines and neural networks
    • IEEE Computer Society Press
    • Sung, A.H., Mukkamala, S.: Identifying Important Features for Intrusion Detection Using Support Vector Machines and Neural Networks. In: Proc. of the 2003 Int. Sym. on Applications and the Internet Technology, IEEE Computer Society Press. (2003) 209-216
    • (2003) Proc. of the 2003 Int. Sym. on Applications and the Internet Technology , pp. 209-216
    • Sung, A.H.1    Mukkamala, S.2
  • 16
    • 24944485860 scopus 로고    scopus 로고
    • Fusions of GA and SVM for anomaly detection in intrusion detection system
    • Springer-Verlag, Berlin Heidelberg
    • Kim, D.S., Nguyen, H.-N., Ohn, S.-Y., Park, J.S.: Fusions of GA and SVM for Anomaly Detection in Intrusion Detection System. Lecture Notes in Computer Science, Vol. 3498. Springer-Verlag, Berlin Heidelberg (2005) 415-420
    • (2005) Lecture Notes in Computer Science , vol.3498 , pp. 415-420
    • Kim, D.S.1    Nguyen, H.-N.2    Ohn, S.-Y.3    Park, J.S.4
  • 18
    • 0002593344 scopus 로고
    • Multi-interval discretization of continues attributes as preprocessing for classification learning
    • Morgan Kaufmann Publishers
    • Fayyad, U., Irani, K.: Multi-interval discretization of continues attributes as preprocessing for classification learning. In: Proc. of the 13th Int. Join Conf. on Artificial Intelligence, Morgan Kaufmann Publishers (1993) 1022-1027
    • (1993) Proc. of the 13th Int. Join Conf. on Artificial Intelligence , pp. 1022-1027
    • Fayyad, U.1    Irani, K.2
  • 21
    • 33644645396 scopus 로고    scopus 로고
    • On failure of machine learning algorithms for detecting misuse in KDD intrusion detection data set
    • Sabhnani, M., Serpen, G.: On Failure of Machine Learning Algorithms for Detecting Misuse in KDD Intrusion Detection Data Set. J. of Intelligent Data Analysis. (2004)
    • (2004) J. of Intelligent Data Analysis
    • Sabhnani, M.1    Serpen, G.2
  • 22
    • 24944586818 scopus 로고    scopus 로고
    • Network-based intrusion detection with support vector machines
    • Springer-Verlag, Berlin Heidelberg
    • Kim, D.S., Park, J.S.: Network-based Intrusion Detection with Support Vector Machines, Lecture Notes in Computer Science, Vol. 2662, Springer-Verlag, Berlin Heidelberg (2003) 747-756
    • (2003) Lecture Notes in Computer Science , vol.2662 , pp. 747-756
    • Kim, D.S.1    Park, J.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.