-
4
-
-
17044405496
-
-
(c) Wang, Y.; Tennyson, R. L.; Romo, D. Heterocycles 2004, 64, 605.
-
(2004)
Heterocycles
, vol.64
, pp. 605
-
-
Wang, Y.1
Tennyson, R.L.2
Romo, D.3
-
6
-
-
0037040706
-
-
For recent examples demonstrating the dual reactivity of β-lactones, see
-
For recent examples demonstrating the dual reactivity of β-lactones, see: (a) Lall, M. S.; Ramtohul, Y. K.; James, M. N. G.; Vederas, J. C. J. Org. Chem. 2002, 67, 1536.
-
(2002)
J. Org. Chem.
, vol.67
, pp. 1536
-
-
Lall, M.S.1
Ramtohul, Y.K.2
James, M.N.G.3
Vederas, J.C.4
-
7
-
-
0037178969
-
-
(b) Yokota, Y.; Cortez, G. S.; Romo, D. Tetrahedron 2002, 58, 7075.
-
(2002)
Tetrahedron
, vol.58
, pp. 7075
-
-
Yokota, Y.1
Cortez, G.S.2
Romo, D.3
-
8
-
-
0037178970
-
-
(c) Nelson, S. G.; Spencer, K. L.; Cheung, W. S.; Mamie, S. J. Tetrahedron 2002, 58, 7081.
-
(2002)
Tetrahedron
, vol.58
, pp. 7081
-
-
Nelson, S.G.1
Spencer, K.L.2
Cheung, W.S.3
Mamie, S.J.4
-
9
-
-
0037067526
-
-
(d) Nelson, S. G.; Wan, Z.; Stan, M. A. J. Org. Chem. 2002, 67, 4680.
-
(2002)
J. Org. Chem.
, vol.67
, pp. 4680
-
-
Nelson, S.G.1
Wan, Z.2
Stan, M.A.3
-
11
-
-
0005937043
-
-
For reviews on hard/soft acid-base theory (HSAB) theory, see
-
For reviews on hard/soft acid-base theory (HSAB) theory, see: (a) Pearson, R. G. Coord. Chem. Rev. 1990, 100, 403.
-
(1990)
Coord. Chem. Rev.
, vol.100
, pp. 403
-
-
Pearson, R.G.1
-
12
-
-
0038661201
-
-
(b) Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793.
-
(2003)
Chem. Rev.
, vol.103
, pp. 1793
-
-
Geerlings, P.1
De Proft, F.2
Langenaeker, W.3
-
14
-
-
0033588149
-
-
(a) Takada, N.; Sato, H.; Suenaga, K.; Arimoto, H.; Yamada, K.; Ueda, K.; Uemura, D. Tetrahedron Lett. 1999, 40, 6309.
-
(1999)
Tetrahedron Lett.
, vol.40
, pp. 6309
-
-
Takada, N.1
Sato, H.2
Suenaga, K.3
Arimoto, H.4
Yamada, K.5
Ueda, K.6
Uemura, D.7
-
17
-
-
67649586937
-
-
Known, direct methods for β-lactone synthesis from chiral α-oxy aldehydes are either unsuccessful or provide only syn selectivity (see ref 2)
-
Known, direct methods for β-lactone synthesis from chiral α-oxy aldehydes are either unsuccessful or provide only syn selectivity (see ref 2).
-
-
-
-
19
-
-
0035902268
-
-
(b) Calter, M. A.; Guo, X.; Liao, W. Org. Lett. 2001, 3, 1499.
-
(2001)
Org. Lett.
, vol.3
, pp. 1499
-
-
Calter, M.A.1
Guo, X.2
Liao, W.3
-
21
-
-
67649592790
-
-
For a review describing use of ketenes in asymmetric synthesis, see ref 2d
-
(d) For a review describing use of ketenes in asymmetric synthesis, see ref 2d.
-
-
-
-
22
-
-
28844433587
-
-
Duffy, R. J.; Morris, K. A.; Romo, D. J. Am. Chem. Soc. 2005, 127, 16754.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 16754
-
-
Duffy, R.J.1
Morris, K.A.2
Romo, D.3
-
23
-
-
67649607767
-
-
The ring strain of epoxides (25.7 kcal/mol) is greater than that of β-lactones (22.6 kcal/mol)
-
The ring strain of epoxides (25.7 kcal/mol) is greater than that of β-lactones (22.6 kcal/mol).
-
-
-
-
24
-
-
0348041982
-
-
Calter, M. A.; Orr, R. K.; Song, W. Org. Lett. 2003, 5, 4745.
-
(2003)
Org. Lett.
, vol.5
, pp. 4745
-
-
Calter, M.A.1
Orr, R.K.2
Song, W.3
-
25
-
-
33744898777
-
-
Purohit, V. C.; Richardson, R. D.; Smith, J. W.; Romo, D. J. Org. Chem. 2006, 71, 4549.
-
(2006)
J. Org. Chem.
, vol.71
, pp. 4549
-
-
Purohit, V.C.1
Richardson, R.D.2
Smith, J.W.3
Romo, D.4
-
26
-
-
0007100920
-
-
For preparation of DMDO, see: Murray, R. W.; Wiley & Sons: New York
-
For preparation of DMDO, see: (a) Murray, R. W.; Singh, M. Organic Syntheses; Wiley & Sons: New York, 1998;
-
(1998)
Organic Syntheses
-
-
Singh, M.1
-
27
-
-
67649574536
-
-
Collect. Vol.IX, p 288.
-
Collect.
, vol.9
, pp. 288
-
-
-
28
-
-
67649586936
-
-
See ref 10 for further details
-
(b) See ref 10 for further details.
-
-
-
-
29
-
-
67649616887
-
-
Average O1-C4 bond length for 40 β-lactones found in the Cambridge Structural Database
-
Average O1-C4 bond length for 40 β-lactones found in the Cambridge Structural Database.
-
-
-
-
30
-
-
11344284526
-
-
Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, S1.
-
(1987)
J. Chem. Soc., Perkin Trans. 2
-
-
Allen, F.H.1
Kennard, O.2
Watson, D.G.3
Brammer, L.4
Orpen, A.G.5
Taylor, R.6
-
32
-
-
34848815912
-
-
Lotesta, S. D.; Kiren, S.; Sauers, R. R.; Williams, L. J. Angew. Chem., Int. Ed. 2007, 46, 7108.
-
(2007)
Angew. Chem., Int. Ed.
, vol.46
, pp. 7108
-
-
Lotesta, S.D.1
Kiren, S.2
Sauers, R.R.3
Williams, L.J.4
-
34
-
-
0014603739
-
-
Lawson, A. M.; Leemans, F. A.; McCloskey, J. A. Steroids 1969, 14, 603.
-
(1969)
Steroids
, vol.14
, pp. 603
-
-
Lawson, A.M.1
Leemans, F.A.2
McCloskey, J.A.3
-
35
-
-
0001229705
-
-
Diakur, J.; Nakashima, T. T.; Vederas, J. C. Can. J. Chem. 1980, 58, 1311.
-
(1980)
Can. J. Chem.
, vol.58
, pp. 1311
-
-
Diakur, J.1
Nakashima, T.T.2
Vederas, J.C.3
-
38
-
-
11144311055
-
-
(b) Wilson, J. E.; Fu, G. C. Angew. Chem., Int. Ed. 2004, 43, 6358.
-
(2004)
Angew. Chem., Int. Ed.
, vol.43
, pp. 6358
-
-
Wilson, J.E.1
Fu, G.C.2
-
39
-
-
0001202879
-
-
Fujisawa, T.; Kojima, E.; Itoh, T.; Sato, T. Tetrahedron Lett. 1985, 26, 6089.
-
(1985)
Tetrahedron Lett.
, vol.26
, pp. 6089
-
-
Fujisawa, T.1
Kojima, E.2
Itoh, T.3
Sato, T.4
-
40
-
-
33845471613
-
-
Evans, D. A.; Ennis, M. D.; Le, T.; Mandel, N.; Mandel, G. J. Am. Chem. Soc. 1984, 106, 1154.
-
(1984)
J. Am. Chem. Soc.
, vol.106
, pp. 1154
-
-
Evans, D.A.1
Ennis, M.D.2
Le, T.3
Mandel, N.4
Mandel, G.5
-
41
-
-
0035917353
-
-
Allen, A. D.; Cheng, B.; Fenwick, M. H.; Givehchi, B.; Henry-Riyad, H.; Nikolaev, V. A.; Shikhova, E. A.; Tahmassebi, D.; Tidwell, T. T.; Wang, S. J. Org. Chem. 2001, 66, 2611.
-
(2001)
J. Org. Chem.
, vol.66
, pp. 2611
-
-
Allen, A.D.1
Cheng, B.2
Fenwick, M.H.3
Givehchi, B.4
Henry-Riyad, H.5
Nikolaev, V.A.6
Shikhova, E.A.7
Tahmassebi, D.8
Tidwell, T.T.9
Wang, S.10
-
42
-
-
0001135241
-
-
For a related process leading to allylic alcohols from epoxides, see
-
For a related process leading to allylic alcohols from epoxides, see: Murata, S.; Suzuki, M.; Noyori, R. J. Am. Chem. Soc. 1979, 101, 2738.
-
(1979)
J. Am. Chem. Soc.
, vol.101
, pp. 2738
-
-
Murata, S.1
Suzuki, M.2
Noyori, R.3
-
43
-
-
0000059963
-
-
(a) Normant, J. F.; Alexakis, A.; Cahiez, G. Tetrahedron Lett. 1980, 21, 935.
-
(1980)
Tetrahedron Lett.
, vol.21
, pp. 935
-
-
Normant, J.F.1
Alexakis, A.2
Cahiez, G.3
-
44
-
-
34250673592
-
-
(b) Zhang, W.; Matla, A. S.; Romo, D. Org. Lett. 2007, 9, 2111.
-
(2007)
Org. Lett.
, vol.9
, pp. 2111
-
-
Zhang, W.1
Matla, A.S.2
Romo, D.3
-
45
-
-
0001547021
-
-
The absolute configuration of the dimer of methylketene prepared using quinidine was determined by conversion to a β-hydroxy ketone also derived from (S)-(+)-3-hydroxy-2-methyl propionate. See
-
The absolute configuration of the dimer of methylketene prepared using quinidine was determined by conversion to a β-hydroxy ketone also derived from (S)-(+)-3-hydroxy-2-methyl propionate. See: Calter, M. A. J. Org. Chem. 1996, 61, 8006.
-
(1996)
J. Org. Chem.
, vol.61
, pp. 8006
-
-
Calter, M.A.1
-
46
-
-
0035798137
-
-
The Z geometry of the ketene dimer was established indirectly during subsequent aldol reactions of the derived (Z)-lithium enolates. See: and ref 9c
-
The Z geometry of the ketene dimer was established indirectly during subsequent aldol reactions of the derived (Z)-lithium enolates. See: Calter, M. A.; Liao, W.; Struss, J. A. J. Org. Chem. 2001, 66, 7500, and ref 9c.
-
(2001)
J. Org. Chem.
, vol.66
, pp. 7500
-
-
Calter, M.A.1
Liao, W.2
Struss, J.A.3
-
47
-
-
64549151922
-
-
For a recent report of homoketene dimerization promoted by phosphines and a lead reference to ketene dimerizations, see
-
For a recent report of homoketene dimerization promoted by phosphines and a lead reference to ketene dimerizations, see: Ibrahim, A. A.; Harzmann, G. D.; Kerrigan, N. J. J. Org. Chem. 2009, 74, 1777.
-
(2009)
J. Org. Chem.
, vol.74
, pp. 1777
-
-
Ibrahim, A.A.1
Harzmann, G.D.2
Kerrigan, N.J.3
-
48
-
-
0035959985
-
-
(a) Sodeoka, M.; Sampe, R.; Kojima, S.; Baba, Y.; Usui, T.; Ueda, K.; Osada, H. J. Med. Chem. 2001, 4, 3216.
-
(2001)
J. Med. Chem.
, vol.4
, pp. 3216
-
-
Sodeoka, M.1
Sampe, R.2
Kojima, S.3
Baba, Y.4
Usui, T.5
Ueda, K.6
Osada, H.7
-
49
-
-
42149141235
-
-
(b) Mansour, T. S.; Caufield, C. E.; Rasmussen, B.; Chopra, R.; Krishnamurthy, G.; Morris, K. M.; Svenson, K.; Bard, J.; Smeltzer, C.; Naughton, S.; Antane, S.; Yang, Y.; Severin, A.; Quagliato, D.; Peterson, P. J.; Singh, G. ChemMedChem 2007, 2, 1414.
-
(2007)
ChemMedChem
, vol.2
, pp. 1414
-
-
Mansour, T.S.1
Caufield, C.E.2
Rasmussen, B.3
Chopra, R.4
Krishnamurthy, G.5
Morris, K.M.6
Svenson, K.7
Bard, J.8
Smeltzer, C.9
Naughton, S.10
Antane, S.11
Yang, Y.12
Severin, A.13
Quagliato, D.14
Peterson, P.J.15
Singh, G.16
-
50
-
-
40749124827
-
-
(c) Peukert, S.; Sun, Y.; Zhang, R.; Hurley, B.; Sabio, M.; Shen, X.; Gray, C.; Dzink-Fox, J.; Tao, J.; Cebula, R.; Wattanasin, S. Bioorg. Med. Chem. 2008, 18, 1840.
-
(2008)
Bioorg. Med. Chem.
, vol.18
, pp. 1840
-
-
Peukert, S.1
Sun, Y.2
Zhang, R.3
Hurley, B.4
Sabio, M.5
Shen, X.6
Gray, C.7
Dzink-Fox, J.8
Tao, J.9
Cebula, R.10
Wattanasin, S.11
-
54
-
-
0031909242
-
-
(a) Lee, S.-C.; Williams, G. A.; Brown, G. D. J. Nat. Prod. 1998, 61, 29.
-
(1998)
J. Nat. Prod.
, vol.61
, pp. 29
-
-
Lee, S.-C.1
Williams, G.A.2
Brown, G.D.3
-
55
-
-
0032834888
-
-
(b) Lee, S.-C.; Williams, G. A.; Brown, G. D. Phytochemistry 1999, 52, 537.
-
(1999)
Phytochemistry
, vol.52
, pp. 537
-
-
Lee, S.-C.1
Williams, G.A.2
Brown, G.D.3
-
56
-
-
0037076946
-
-
(c) Wong, H.-F.; Williams, G. A.; Brown, G. D. Phytochemistry 2002, 60, 425.
-
(2002)
Phytochemistry
, vol.60
, pp. 425
-
-
Wong, H.-F.1
Williams, G.A.2
Brown, G.D.3
-
57
-
-
18144386525
-
-
(d) Brown, G. D.; Wong, H. F.; Hutchinson, N.; Lee, S. C.; Chan, B. K. K.; Williams, G. A. Phytochem. Rev. 2005, 3, 381.
-
(2005)
Phytochem. Rev.
, vol.3
, pp. 381
-
-
Brown, G.D.1
Wong, H.F.2
Hutchinson, N.3
Lee, S.C.4
Chan, B.K.K.5
Williams, G.A.6
-
59
-
-
18844428577
-
-
Kar, A.; Gogoi, S.; Argade, N. P. Tetrahedron 2005, 61, 5297.
-
(2005)
Tetrahedron
, vol.61
, pp. 5297
-
-
Kar, A.1
Gogoi, S.2
Argade, N.P.3
-
60
-
-
1342332827
-
-
and references cited therein
-
Fusetani, N. Nat. Prod. Rep. 2004, 21, 94, and references cited therein.
-
(2004)
Nat. Prod. Rep.
, vol.21
, pp. 94
-
-
Fusetani, N.1
-
61
-
-
67649622985
-
-
19F NMR spectra
-
19F NMR spectra.
-
-
-
-
62
-
-
15944372237
-
-
Kapferer, T.; Brueckner, R.; Herzig, A.; Koenig, W. A. Chem. - Eur. J. 2005, 11, 2154.
-
(2005)
Chem. - Eur. J.
, vol.11
, pp. 2154
-
-
Kapferer, T.1
Brueckner, R.2
Herzig, A.3
Koenig, W.A.4
-
63
-
-
33750933367
-
-
Le Vézouët, R.; White, A. J. P.; Burrows, J. N.; Barrett, A. G. M. Tetrahedron 2006, 62, 12252.
-
(2006)
Tetrahedron
, vol.62
, pp. 12252
-
-
Le Vézouët, R.1
White, A.J.P.2
Burrows, J.N.3
Barrett, A.G.M.4
-
64
-
-
0035809965
-
-
Garcia Martinez, A.; Osio Barcina, J.; del Rosario Colorado Heras, M.; de Fresno Cerezo, A. Organometallics 2001, 20, 1020.
-
(2001)
Organometallics
, vol.20
, pp. 1020
-
-
Garcia Martinez, A.1
Osio Barcina, J.2
Del Rosario Colorado Heras, M.3
De Fresno Cerezo, A.4
-
65
-
-
67649577258
-
-
Jalander, L.; Oksanen, L.; Rosling, A. Acta Chem. Scand. 1990, 44, 842.
-
(1990)
Acta Chem. Scand.
, vol.44
, pp. 842
-
-
Jalander, L.1
Oksanen, L.2
Rosling, A.3
-
66
-
-
67649619867
-
-
Synthetic (+)-maculalactone was tested for its ability to inhibit the formation of bacterial biofilms. For Gram-positive bacteria, modest anti-biofilm activity was noted against vancomycin-resistant Enterococcus facium (VRE, ATCC #51559) and methicillin-resistant Staphylococcus aureus (MRSA, ATCC #BAA-44). A dose response study revealed IC50 values of 210 and 290 mM against VRE and MRSA, respectively. Growth curves of each bacterial strain grown in the presence or absence of (+)-maculalactone were identical, thus indicating that activity was driven by a non-microbicidal mechanism. Maculalactone was also screened for its ability to inhibit biofilm development of two Gram-negative strains of bacteria, Pseudomonas aeruginosa (PAO1) and multidrug-resistant Acinetobacter baumannii (ATCC #BAA-1605). However, no antibiofilm activity was noted
-
Synthetic (+)-maculalactone was tested for its ability to inhibit the formation of bacterial biofilms. For Gram-positive bacteria, modest anti-biofilm activity was noted against vancomycin-resistant Enterococcus facium (VRE, ATCC #51559) and methicillin-resistant Staphylococcus aureus (MRSA, ATCC #BAA-44). A dose response study revealed IC50 values of 210 and 290 mM against VRE and MRSA, respectively. Growth curves of each bacterial strain grown in the presence or absence of (+)-maculalactone were identical, thus indicating that activity was driven by a non-microbicidal mechanism. Maculalactone was also screened for its ability to inhibit biofilm development of two Gram-negative strains of bacteria, Pseudomonas aeruginosa (PAO1) and multidrug-resistant Acinetobacter baumannii (ATCC #BAA-1605). However, no antibiofilm activity was noted.
-
-
-
-
67
-
-
0030294936
-
-
Tsui, W.-Y.; Williams, G. A.; Brown, G. D. Phytochemistry 1996, 43, 1083.
-
(1996)
Phytochemistry
, vol.43
, pp. 1083
-
-
Tsui, W.-Y.1
Williams, G.A.2
Brown, G.D.3
|