메뉴 건너뛰기




Volumn 9, Issue 6, 2009, Pages 1001-1013

Application of artificial neural networks for airline number of passenger estimation in time series state

Author keywords

Airline number of passenger; Artificial neural network; Data envelopment analysis; Pre processed data; Prediction

Indexed keywords

ANN MODELS; AUTOCORRELATION FUNCTIONS; INPUT VARIABLES; KRUSKAL-WALLIS TESTS; MATLAB- SOFTWARE; PERCEPTRON; POST PROCESS; PRE-PROCESSED DATA;

EID: 67649604328     PISSN: 18125654     EISSN: 18125662     Source Type: Journal    
DOI: 10.3923/jas.2009.1001.1013     Document Type: Article
Times cited : (10)

References (26)
  • 1
    • 33947661488 scopus 로고    scopus 로고
    • Forecasting electrical consumption by integration of neural network, time series and ANOVA
    • Azadeh, A., S.F. Ghaden and S. Sohrabkhani, 2007a. Forecasting electrical consumption by integration of neural network, time series and ANOVA. Applied Math. Comput., 186: 1753-1761.
    • (2007) Applied Math. Comput. , vol.186 , pp. 1753-1761
    • Azadeh, A.1    Ghaden, S.F.2    Sohrabkhani, S.3
  • 2
    • 34047099220 scopus 로고    scopus 로고
    • Integration of artificial neural networks andgenetic algorithm to predict electrical energyconsumption
    • Azadeh, A., S.F. Ghaderi, S. Tarverdian and M. Saberi, 2007b. Integration of artificial neural networks andgenetic algorithm to predict electrical energyconsumption. Applied Math. Comput., 186: 1731-1741.
    • (2007) Applied Math. Comput. , vol.186 , pp. 1731-1741
    • Azadeh, A.1    Ghaderi, S.F.2    Tarverdian, S.3    Saberi, M.4
  • 4
    • 0004311217 scopus 로고
    • Time Series Analysis: Forecasting and Control
    • 1st Edn., Holden Day, San Francisco, ISBN: 0-8162-1104-3
    • Box, G.E.P. and G.M. Jenkins, 1976. Time Series Analysis: Forecasting and Control. 1st Edn., Holden Day, San Francisco, ISBN: 0-8162-1104-3.
    • (1976)
    • Box, G.E.P.1    Jenkins, G.M.2
  • 5
    • 0018032112 scopus 로고
    • Measuring the efficiency of decision making units
    • Charnes, A., W.W. Cooper and E. Rhodes, 1978. Measuring the efficiency of decision making units. Eur. J. Operat. Res., 2: 429-444.
    • (1978) Eur. J. Operat. Res. , vol.2 , pp. 429-444
    • Charnes, A.1    Cooper, W.W.2    Rhodes, E.3
  • 6
    • 0030111856 scopus 로고    scopus 로고
    • A neural network approach to mutual fund net asset value forecasting
    • Chiang, W.C, T.L. Urban and G.W. Baldridge, 1996. A neural network approach to mutual fund net asset value forecasting. Omega, 24: 205-215.
    • (1996) Omega , vol.24 , pp. 205-215
    • Chiang, W.C.1    Urban, T.L.2    Baldridge, G.W.3
  • 7
    • 0024861871 scopus 로고
    • Approximation by super-positions of a sigmoidal function
    • Cybenko, G., 1989. Approximation by super-positions of a sigmoidal function. Math. Control Signal., 2: 303-314.
    • (1989) Math. Control Signal. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 8
    • 0003398189 scopus 로고    scopus 로고
    • 1st Edn., John Wiley and Sons, New York, ISBN: 0471230650
    • Enders, W., 2004. Applied Econometric Time Series. 1st Edn., John Wiley and Sons, New York, ISBN: 0471230650.
    • (2004) Applied Econometric Time Series
    • Enders, W.1
  • 9
    • 33645418480 scopus 로고    scopus 로고
    • Forecasting of electricity prices with neural networks
    • Gareta, R., L.M. Romeo and A. Gil, 2006. Forecasting of electricity prices with neural networks. Energ. Convers. Manage., 47: 1770-1778.
    • (2006) Energ. Convers. Manage. , vol.47 , pp. 1770-1778
    • Gareta, R.1    Romeo, L.M.2    Gil, A.3
  • 10
    • 0000860595 scopus 로고    scopus 로고
    • Neural network models for time series forecasts
    • Hill, T., M. O'Connor and W. Remus, 1996. Neural network models for time series forecasts. Manage. Sci., 42: 1082-1092.
    • (1996) Manage. Sci. , vol.42 , pp. 1082-1092
    • Hill, T.1    O'Connor, M.2    Remus, W.3
  • 11
    • 0012759982 scopus 로고    scopus 로고
    • Insights into neural-network forecasting of time series corresponding to ARMA (p; q) structures
    • Hwarng, H.B., 2001. Insights into neural-network forecasting of time series corresponding to ARMA (p; q) structures. Omega-Int. J. Manage. Sci., 29: 273-289.
    • (2001) Omega-Int J. Manage. Sci. , vol.29 , pp. 273-289
    • Hwarng, H.B.1
  • 12
    • 0013311467 scopus 로고    scopus 로고
    • Predicting mutual fund performance using artificial neural networks
    • Indro, D.C., C.X. Jiang, B.E. Paruwo and G.P. Zhang, 1999. Predicting mutual fund performance using artificial neural networks. Omega-Int. J. Manage. S., 27: 373-380.
    • (1999) Omega-Int J. Manage. S. , vol.27 , pp. 373-380
    • Indro, D.C.1    Jiang, C.X.2    Paruwo, B.E.3    Zhang, G.P.4
  • 13
    • 33846813334 scopus 로고    scopus 로고
    • Hybrid neural network models for hydrologic time series forecasting
    • Jain, A. and A.M. Kumar, 2007. Hybrid neural network models for hydrologic time series forecasting. Applied Soft Comput., 7: 585-592.
    • (2007) Applied Soft Comput. , vol.7 , pp. 585-592
    • Jain, A.1    Kumar, A.M.2
  • 14
    • 33646572227 scopus 로고    scopus 로고
    • Chaotic time series prediction with a global model artificial neural network
    • Karunasinghe, D.S.K. and S.Y. Liong, 2006. Chaotic time series prediction with a global model artificial neural network. J. Hydrol., 323: 92-105.
    • (2006) J. Hydrol. , vol.323 , pp. 92-105
    • Karunasinghe, D.S.K.1    Liong, S.Y.2
  • 15
    • 10244222718 scopus 로고    scopus 로고
    • Artificial neural networks for non-stationary time series
    • Kim, T.Y., K.J. Oh, C. Kim and J.D. Do, 2004. Artificial neural networks for non-stationary time series. Neurocomputing, 61: 439-447.
    • (2004) Neurocomputing , vol.61 , pp. 439-447
    • Kim, T.Y.1    Oh, K.J.2    Kim, C.3    Do, J.D.4
  • 16
    • 0030111205 scopus 로고    scopus 로고
    • A comparison of artificial neural network and time series models for forecasting commodity prices
    • Kohzadi, N, M.S. Boyd, B. Kermanshahi and I. Kaastra, 1996. A comparison of artificial neural network and time series models for forecasting commodity prices. Neurocomputing, 10: 169-181.
    • (1996) Neurocomputing , vol.10 , pp. 169-181
    • Kohzadi, N.1    Boyd, M.S.2    Kermanshahi, B.3    Kaastra, I.4
  • 17
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydro logical time series
    • Nayak, P.C, K.P. Sudheer, D.M. Rangan and K.S. Ramasastri, 2004. A neuro-fuzzy computing technique for modeling hydro logical time series. J. Hydrol., 291: 52-66.
    • (2004) J. Hydrol. , vol.291 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 19
    • 33745933319 scopus 로고    scopus 로고
    • Designing an artificial neural network for forecasting tourism time series
    • Palmer, A., J. J. Montano and A. Sese, 2006. Designing an artificial neural network for forecasting tourism time series. Tourism Manage., 27: 781-790.
    • (2006) Tourism Manage. , vol.27 , pp. 781-790
    • Palmer, A.1    Montano, J.J.2    Sese, A.3
  • 20
    • 33846446220 scopus 로고
    • Restart procedures for the conjugate gradient method
    • Powell, M. J.D., 1977. Restart procedures for the conjugate gradient method. Math. Program., 12: 241-254.
    • (1977) Math. Program. , vol.12 , pp. 241-254
    • Powell, M.J.D.1
  • 21
    • 0003140365 scopus 로고    scopus 로고
    • Neural networks in applied statistics
    • Stern, H.S., 1996. Neural networks in applied statistics. Technometrics, 38: 205-214.
    • (1996) Technometrics , vol.38 , pp. 205-214
    • Stern, H.S.1
  • 22
    • 0036140323 scopus 로고    scopus 로고
    • Combining neural network model with seasonal time series ARIMA model
    • Tseng, F.M., H.C. Yu and G.H. Tzeng, 2002. Combining neural network model with seasonal time series ARIMA model. Technol Forecast. Soc. Change, 69: 71-87.
    • (2002) Technol Forecast. Soc. Change , vol.69 , pp. 71-87
    • Tseng, F.M.1    Yu, H.C.2    Tzeng, G.H.3
  • 23
    • 0032133950 scopus 로고    scopus 로고
    • Neural network forecasting of the British pound/US dollar exchange rate
    • Zhang, G. and M.Y. Hu, 1998. Neural network forecasting of the British pound/US dollar exchange rate. Omega-Int. J. Manage. S., 26: 495-506.
    • (1998) Omega-Int. J. Manage. S. , vol.26 , pp. 495-506
    • Zhang, G.1    Hu, M.Y.2
  • 24
    • 0035480297 scopus 로고    scopus 로고
    • An investigation of neural networks for linear time-series forecasting
    • Zhang, G.P., 2001. An investigation of neural networks for linear time-series forecasting. Comput. Operat. Res., 28: 1183-1202.
    • (2001) Comput. Operat. Res. , vol.28 , pp. 1183-1202
    • Zhang, G.P.1
  • 25
    • 4344591889 scopus 로고    scopus 로고
    • Neural network forecasting for seasonal and trend time series
    • Zhang, G.P. and M. Qi, 2005. Neural network forecasting for seasonal and trend time series. Eur. J. Operat. Res., 160: 501-514.
    • (2005) Eur. J. Operat. Res. , vol.160 , pp. 501-514
    • Zhang, G.P.1    Qi, M.2
  • 26
    • 0032210629 scopus 로고    scopus 로고
    • Data envelopment analysis versus. Principal component analysis: An illustrative study of economic performance of Chinese cities
    • Zhu, J., 1998. Data envelopment analysis versus. Principal component analysis: An illustrative study of economic performance of Chinese cities. Eur. J. Operat. Res., Ill: 50-61.
    • (1998) Eur. J. Operat. Res. , vol.I11 , pp. 50-61
    • Zhu, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.