-
1
-
-
0005797124
-
2 solar cells
-
Archer M.D., and Hill R. (Eds), Imperial College Press, London
-
2 solar cells. In: Archer M.D., and Hill R. (Eds). Clean Energy from Photovoltaics (2001), Imperial College Press, London 277-345
-
(2001)
Clean Energy from Photovoltaics
, pp. 277-345
-
-
Rau, U.1
Schock, H.W.2
-
3
-
-
84920870120
-
Chalcopyrite based solar cells
-
Poortmans J., and Arkhipov V. (Eds), Wiley, Chichester
-
Klenk R., and Lux-Steiner M.C. Chalcopyrite based solar cells. In: Poortmans J., and Arkhipov V. (Eds). Thin Film Solar Cells (2006), Wiley, Chichester 237-275
-
(2006)
Thin Film Solar Cells
, pp. 237-275
-
-
Klenk, R.1
Lux-Steiner, M.C.2
-
4
-
-
18444368586
-
-
S. Siebentritt, U. Rau Eds, Springer, Berlin
-
S. Siebentritt, U. Rau (Eds.), Wide-Gap Chalcopyrites, Springer, Berlin, 2006.
-
(2006)
Wide-Gap Chalcopyrites
-
-
-
5
-
-
33745830236
-
Cadmium telluride solar cells
-
Archer M.D., and Hill R. (Eds), Imperial College Press, London
-
Bonnet D. Cadmium telluride solar cells. In: Archer M.D., and Hill R. (Eds). Clean Energy from Photovoltaics (2001), Imperial College Press, London 245-275
-
(2001)
Clean Energy from Photovoltaics
, pp. 245-275
-
-
Bonnet, D.1
-
6
-
-
9944232157
-
Cadmium telluride solar cells
-
Luque A., and Hegedus S. (Eds), Wiley, Chichester
-
McCandless B.E., and Sites J.R. Cadmium telluride solar cells. In: Luque A., and Hegedus S. (Eds). Handbook of Photovoltaic Science and Technology (2003), Wiley, Chichester 617-661
-
(2003)
Handbook of Photovoltaic Science and Technology
, pp. 617-661
-
-
McCandless, B.E.1
Sites, J.R.2
-
7
-
-
84959097477
-
Cadmium telluride thin film solar cells: characterization, fabrication and modeling
-
Poortmans J., and Arkhipov V. (Eds), Wiley, Chichester
-
Burgelman M. Cadmium telluride thin film solar cells: characterization, fabrication and modeling. In: Poortmans J., and Arkhipov V. (Eds). Thin Film Solar Cells (2006), Wiley, Chichester 277-324
-
(2006)
Thin Film Solar Cells
, pp. 277-324
-
-
Burgelman, M.1
-
9
-
-
38649140497
-
Transparent electronics: Schottky barrier and heterojunction considerations
-
Wager J.F. Transparent electronics: Schottky barrier and heterojunction considerations. Thin Solid Films 516 (2008) 1755-1764
-
(2008)
Thin Solid Films
, vol.516
, pp. 1755-1764
-
-
Wager, J.F.1
-
10
-
-
67349276036
-
-
note
-
HJ, as given by Eq. (11), and band-bending may occur on both sides of the interface for this somewhat more complicated situation.
-
-
-
-
11
-
-
0034187380
-
Band offsets of wide-band-gap oxides and implications for future electronic devices
-
Robertson J.R. Band offsets of wide-band-gap oxides and implications for future electronic devices. J. Vac. Sci. Technol. B 18 (2000) 1785-1791
-
(2000)
J. Vac. Sci. Technol. B
, vol.18
, pp. 1785-1791
-
-
Robertson, J.R.1
-
12
-
-
0001597428
-
Schottky-barrier heights and the continuum of gap states
-
Tersoff J. Schottky-barrier heights and the continuum of gap states. Phys. Rev. Lett. 52 (1984) 465-468
-
(1984)
Phys. Rev. Lett.
, vol.52
, pp. 465-468
-
-
Tersoff, J.1
-
13
-
-
0000319664
-
Acoustic deformation potentials and heterostructure band offsets in semiconductors
-
Cardona M., and Christensen N.E. Acoustic deformation potentials and heterostructure band offsets in semiconductors. Phys. Rev. B 35 (1987) 6182-6194
-
(1987)
Phys. Rev. B
, vol.35
, pp. 6182-6194
-
-
Cardona, M.1
Christensen, N.E.2
-
14
-
-
28544446592
-
-
A.A. Demkov, L.R.C. Fonseca, E. Verret, J. Tomfohr, O.F. Sankey, Complex band structure and the band alignment problem at the Si-high-k dielectric interface, Phys. Rev. B 71 (2005) 195306/1-8.
-
A.A. Demkov, L.R.C. Fonseca, E. Verret, J. Tomfohr, O.F. Sankey, Complex band structure and the band alignment problem at the Si-high-k dielectric interface, Phys. Rev. B 71 (2005) 195306/1-8.
-
-
-
-
15
-
-
67349088327
-
Band structure lineup at I-III-VI2 Schottky contacts and heterojunctions
-
Siebentritt S., and Rau U. (Eds), Springer, Berlin
-
Mönch W. Band structure lineup at I-III-VI2 Schottky contacts and heterojunctions. In: Siebentritt S., and Rau U. (Eds). Wide-Gap Chalcopyrites (2006), Springer, Berlin 9-33
-
(2006)
Wide-Gap Chalcopyrites
, pp. 9-33
-
-
Mönch, W.1
-
16
-
-
15744366155
-
Energy level alignment at organic heterojunctions: Role of the charge neutrality level, Phys. Rev. B
-
71 (2005) 041306/1-4
-
H. Vázquez, W. Gao, F. Flores, A. Kahn, Energy level alignment at organic heterojunctions: Role of the charge neutrality level, Phys. Rev. B 71 (2005) 041306/1-4.
-
-
-
Vázquez, H.1
Gao, W.2
Flores, F.3
Kahn, A.4
-
18
-
-
0032230597
-
Semiconductors interfacing polymers for light emission
-
McCaldin J.O. Semiconductors interfacing polymers for light emission. Prog. Solid State Chem. 26 (1998) 241-265
-
(1998)
Prog. Solid State Chem.
, vol.26
, pp. 241-265
-
-
McCaldin, J.O.1
-
20
-
-
3643132041
-
Raman scattering and infrared reflectance in 2H-molybdenum(IV) selenide
-
Sekine T., Izumi M., Nakashizu T., Uchinokura K., and Matsuura E. Raman scattering and infrared reflectance in 2H-molybdenum(IV) selenide. J. Phys. Soc. Jpn. 49 (1980) 1069-1077
-
(1980)
J. Phys. Soc. Jpn.
, vol.49
, pp. 1069-1077
-
-
Sekine, T.1
Izumi, M.2
Nakashizu, T.3
Uchinokura, K.4
Matsuura, E.5
-
22
-
-
0022752527
-
The absolute electrode potential: an explanatory note
-
Trasatti S. The absolute electrode potential: an explanatory note. Pure Appl. Chem. 58 (1986) 955-966
-
(1986)
Pure Appl. Chem.
, vol.58
, pp. 955-966
-
-
Trasatti, S.1
-
23
-
-
0036956807
-
Effect of back-contact copper concentration on CdTe cell operation
-
A.O. Pudov, M. Gloeckler, S.H. Demtsu, J.R. Sites, K.L. Barth, R.A. Enzenroth, W.S. Sampath, Effect of back-contact copper concentration on CdTe cell operation, 29th IEEE Photovoltaic Specialists Conference, 2002, pp. 760-763.
-
(2002)
29th IEEE Photovoltaic Specialists Conference
, pp. 760-763
-
-
Pudov, A.O.1
Gloeckler, M.2
Demtsu, S.H.3
Sites, J.R.4
Barth, K.L.5
Enzenroth, R.A.6
Sampath, W.S.7
-
26
-
-
0037959857
-
p-type conductivity in wide-band-gap BaCuQF (Q = S,Se)
-
Yanagi H., Tate J., Park S., Park C.-H., and Keszler D.A. p-type conductivity in wide-band-gap BaCuQF (Q = S,Se). Appl. Phys. Lett. 82 (2003) 2814-2816
-
(2003)
Appl. Phys. Lett.
, vol.82
, pp. 2814-2816
-
-
Yanagi, H.1
Tate, J.2
Park, S.3
Park, C.-H.4
Keszler, D.A.5
-
27
-
-
0041827058
-
P-type conductivity in transparent oxides and sulfide fluorides
-
Yanagi H., Park S., Draeseke A.D., Keszler D.A., and Tate J. P-type conductivity in transparent oxides and sulfide fluorides. J. Solid State Chem. 175 (2003) 34-38
-
(2003)
J. Solid State Chem.
, vol.175
, pp. 34-38
-
-
Yanagi, H.1
Park, S.2
Draeseke, A.D.3
Keszler, D.A.4
Tate, J.5
-
28
-
-
33750514207
-
-
H. Yanagi, J. Tate, S. Park, C.-H. Park, D.A. Keszler, M. Hirano, H. Hosono, Valence band structure of BaCuSF and BaCuSeF, Appl. Phys. Lett. 100 (2006) 083705/1-5.
-
H. Yanagi, J. Tate, S. Park, C.-H. Park, D.A. Keszler, M. Hirano, H. Hosono, Valence band structure of BaCuSF and BaCuSeF, Appl. Phys. Lett. 100 (2006) 083705/1-5.
-
-
-
-
29
-
-
48049090469
-
Electrical and optical properties of epitaxial transparent conductive BaCuTeF thin films deposited by pulsed laser deposition
-
R. Kykyneshi, D. H. McIntyre, J. Tate, C.-H. Park, D. A. Keszler, Electrical and optical properties of epitaxial transparent conductive BaCuTeF thin films deposited by pulsed laser deposition, Solid State Sci. 10 (2008) 921-927.
-
(2008)
Solid State Sci
, vol.10
, pp. 921-927
-
-
Kykyneshi, R.1
McIntyre, D.H.2
Tate, J.3
Park, C.-H.4
Keszler, D.A.5
-
30
-
-
67349173568
-
-
private communication
-
J. Tate, private communication (2008).
-
(2008)
-
-
Tate, J.1
-
31
-
-
44249116040
-
Chalcogen-based transparent conductors
-
Tate J., Newhouse P.F., Kykyneshi R., Hersh P.A., Kinney J., McIntyre D.H., and Keszler D.A. Chalcogen-based transparent conductors. Thin Solid Films 516 (2008) 5795-5799
-
(2008)
Thin Solid Films
, vol.516
, pp. 5795-5799
-
-
Tate, J.1
Newhouse, P.F.2
Kykyneshi, R.3
Hersh, P.A.4
Kinney, J.5
McIntyre, D.H.6
Keszler, D.A.7
-
32
-
-
0036607416
-
Electrical conductivity control in transparent p-type (LaO)CuS thin films prepared by rf sputtering
-
Hiramatsu H., Orita M., Hirano M., Ueda K., and Hosono H. Electrical conductivity control in transparent p-type (LaO)CuS thin films prepared by rf sputtering. J. Appl. Phys. 91 (2002) 9177-9181
-
(2002)
J. Appl. Phys.
, vol.91
, pp. 9177-9181
-
-
Hiramatsu, H.1
Orita, M.2
Hirano, M.3
Ueda, K.4
Hosono, H.5
-
33
-
-
4143102418
-
Fabrication of heteroepitaxial thin films of layered oxychalcogenides LnCuOCh (Ln = La-Nd; Ch = S - Te) by reactive solid-phase epitaxy
-
Hiramatsu H., Ueda K., Takafuji K., Ohta H., Hirano M., Kamiya T., and Hosono H. Fabrication of heteroepitaxial thin films of layered oxychalcogenides LnCuOCh (Ln = La-Nd; Ch = S - Te) by reactive solid-phase epitaxy. J. Mater. Res. 19 (2004) 2137-2143
-
(2004)
J. Mater. Res.
, vol.19
, pp. 2137-2143
-
-
Hiramatsu, H.1
Ueda, K.2
Takafuji, K.3
Ohta, H.4
Hirano, M.5
Kamiya, T.6
Hosono, H.7
-
34
-
-
36049048032
-
-
H. Hiramatsu, K. Ueda, H. Ohta, M. Hirano, M. Kikuchi, H. Yanagi, T. Kamiya, H. Hosono, Heavy hole doping of epitaxial thin films of a wide gap p-type semiconductor, LaCuOSe, and analysis of the effective mass, Appl. Phys. Lett. 91 (2007) 012104/1-3.
-
H. Hiramatsu, K. Ueda, H. Ohta, M. Hirano, M. Kikuchi, H. Yanagi, T. Kamiya, H. Hosono, Heavy hole doping of epitaxial thin films of a wide gap p-type semiconductor, LaCuOSe, and analysis of the effective mass, Appl. Phys. Lett. 91 (2007) 012104/1-3.
-
-
-
-
35
-
-
33846231021
-
Syntheses, crystal and electronic structure, and some optical and transport properties of LnCuOTe (Ln = La, Ce, Nd)
-
Liu M.L., Wu L.B., Huang F.Q., Chen L.D., and Ibers J.A. Syntheses, crystal and electronic structure, and some optical and transport properties of LnCuOTe (Ln = La, Ce, Nd). J. Solid Solar State Chem. 180 (2007) 62
-
(2007)
J. Solid Solar State Chem.
, vol.180
, pp. 62
-
-
Liu, M.L.1
Wu, L.B.2
Huang, F.Q.3
Chen, L.D.4
Ibers, J.A.5
-
36
-
-
0020087866
-
A photoelectrochemical determination of the position of the conduction and valence band edges of p-type copper(II) oxide
-
Koffyberg F.P., and Benko F.A. A photoelectrochemical determination of the position of the conduction and valence band edges of p-type copper(II) oxide. J. Appl. Phys. 53 (1982) 1173-1177
-
(1982)
J. Appl. Phys.
, vol.53
, pp. 1173-1177
-
-
Koffyberg, F.P.1
Benko, F.A.2
-
41
-
-
0023170704
-
Optoelectronic properties of p- and n-type delafossite
-
Benko F.A., and Koffyberg F.P. Optoelectronic properties of p- and n-type delafossite. J. Phys. Chem. Solids 48 (1987) 431-434
-
(1987)
J. Phys. Chem. Solids
, vol.48
, pp. 431-434
-
-
Benko, F.A.1
Koffyberg, F.P.2
-
42
-
-
67349128968
-
-
note
-
Unless care is taken, signs (i.e., + and -), polarities (i.e., positive and negative) and directions (i.e., right-going and left-going) used in the context of the Schottky barrier-heterojunction theory formulation presented in Sections 2 and 3 can be somewhat confusing. Coherent use of this theory, as encapsulated in Eqs. (1)-(12), requires sketching energy band diagrams in a consistent manner; for a metal-semiconductor interface, the metal should be positioned to the left; for a heterojunction, semiconductor 1 should be positioned to the left. When these conventions are employed, all interfacial discontinuity barriers are defined with respect to the material positioned to the left (i.e., the metal in the case of Schottky barrier theory, and semiconductor 1 in the case of heterojunction theory), built-in potentials are defined with respect to the space charge region barrier of the material positioned to the right (i.e., the semiconductor in the case of Schottky barrier theory, and semiconductor 2 in the case of heterojunction theory), and dipoles are defined in the direction of negative (electron) charge transfer, with right-going corresponding to a positive quantity.
-
-
-
-
43
-
-
67349257843
-
-
note
-
There are three ways to assess whether a metal-semiconductor interface constitutes an ohmic (low-barrier) or rectifying (high-barrier or Schottky barrier) contact. First, it can be discerned through examination of an energy band diagram by establishing whether majority carriers in the bulk semiconductor see an appreciable interfacial barrier, or, alternatively, a very small or completely absent interfacial barrier. Second, an ohmic contact will have either a negative majority carrier Schottky barrier height or a very small (less than ∼ 0.25 V) positive majority carrier Schottky barrier height. Third, for an ohmic contact, the majority carrier built-in potential will be either negative or positive but very small. Note that Eqs. (3) and (4) for the built-in potential are identical in magnitude and only differ in sign. This is a consequence of the fact that when a barrier is present for one carrier type, it is absent for the other carrier type.
-
-
-
-
44
-
-
67349123727
-
-
note
-
2-CIGS interface.
-
-
-
|