-
2
-
-
0033620364
-
-
Zubarev R.A., Kruger N.A., Fridriksson E.K., Lewis M.A., Horn D.M., Carpenter B.K., and McLafferty F.W. J. Am. Chem. Soc. 121 (1999) 2857
-
(1999)
J. Am. Chem. Soc.
, vol.121
, pp. 2857
-
-
Zubarev, R.A.1
Kruger, N.A.2
Fridriksson, E.K.3
Lewis, M.A.4
Horn, D.M.5
Carpenter, B.K.6
McLafferty, F.W.7
-
3
-
-
0034133274
-
-
Zubarev R.A., Horn D.M., Fridriksson E.K., Kelleher N.L., Kruger N.A., Lewis M.A., Carpenter B.K., and McLafferty F.W. Anal. Chem. 72 (2000) 563
-
(2000)
Anal. Chem.
, vol.72
, pp. 563
-
-
Zubarev, R.A.1
Horn, D.M.2
Fridriksson, E.K.3
Kelleher, N.L.4
Kruger, N.A.5
Lewis, M.A.6
Carpenter, B.K.7
McLafferty, F.W.8
-
4
-
-
0036911329
-
-
Zubarev R.A., Haselmann K.F., Budnik B., Kjeldsen F., and Jensen F. Eur. J. Mass Spectrom. 8 (2002) 337
-
(2002)
Eur. J. Mass Spectrom.
, vol.8
, pp. 337
-
-
Zubarev, R.A.1
Haselmann, K.F.2
Budnik, B.3
Kjeldsen, F.4
Jensen, F.5
-
5
-
-
3042789073
-
-
Syka J.E.P., Coon J.J., Schroeder M.J., Shabanowitz J., and Hunt D.F. Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 9523
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 9523
-
-
Syka, J.E.P.1
Coon, J.J.2
Schroeder, M.J.3
Shabanowitz, J.4
Hunt, D.F.5
-
6
-
-
4344683981
-
-
Coon J.J., Syka J.E.P., Schwartz J.C., Shabanowitz J., and Hunt D.F. Int. J. Mass Spectrom. 236 (2004) 33
-
(2004)
Int. J. Mass Spectrom.
, vol.236
, pp. 33
-
-
Coon, J.J.1
Syka, J.E.P.2
Schwartz, J.C.3
Shabanowitz, J.4
Hunt, D.F.5
-
8
-
-
24744440331
-
-
Gunawardena H.P., He M., Chrisman P.A., Pitteri S.J., Hogan J.M., Hodges B.D.M., and McLuckey S.A. J. Am. Chem. Soc. 127 (2005) 12627
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 12627
-
-
Gunawardena, H.P.1
He, M.2
Chrisman, P.A.3
Pitteri, S.J.4
Hogan, J.M.5
Hodges, B.D.M.6
McLuckey, S.A.7
-
9
-
-
34447580244
-
-
Gunawardena H.P., Gorenstein L., Erickson D.E., Xia Y., and McLuckey S.A. Int. J. Mass. Spectrom. 265 (2007) 130
-
(2007)
Int. J. Mass. Spectrom.
, vol.265
, pp. 130
-
-
Gunawardena, H.P.1
Gorenstein, L.2
Erickson, D.E.3
Xia, Y.4
McLuckey, S.A.5
-
22
-
-
12344322708
-
-
Anusiewicz I., Berdys J., Sobczyk M., Sawicka A., Skurski P., and Simons J. J. Phys. Chem. A109 (2005) 250
-
(2005)
J. Phys. Chem.
, vol.A109
, pp. 250
-
-
Anusiewicz, I.1
Berdys, J.2
Sobczyk, M.3
Sawicka, A.4
Skurski, P.5
Simons, J.6
-
32
-
-
50949119207
-
-
Holm A.I.S., Larsen M.K., Panja S., Hvelplund P., Brøndsted Nielsen S., Leib R.D., Donald W.A., Williams E.R., Hao C., and Tureček F. Int. J. Mass Spectrom. 276 (2008) 116
-
(2008)
Int. J. Mass Spectrom.
, vol.276
, pp. 116
-
-
Holm, A.I.S.1
Larsen, M.K.2
Panja, S.3
Hvelplund, P.4
Brøndsted Nielsen, S.5
Leib, R.D.6
Donald, W.A.7
Williams, E.R.8
Hao, C.9
Tureček, F.10
-
36
-
-
57349110726
-
-
Frison G., van der Rest G., Turecek F., Besson T., Lemaire J., Matre P., and Chamot-Rooke J. J. Am. Chem. Soc. 130 (2008) 14916
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 14916
-
-
Frison, G.1
van der Rest, G.2
Turecek, F.3
Besson, T.4
Lemaire, J.5
Matre, P.6
Chamot-Rooke, J.7
-
37
-
-
67349145807
-
-
note
-
Although this evidence is convincing, it is no conclusive because the enol-imine could be formed and then undergo intramolecular H atom transfer if sufficient energy is retained to allow it to overcome the barrier needed to effect this transfer.
-
-
-
-
38
-
-
0032098891
-
-
Dezarnaud-Dandine C., Bournel F., Troncy M., Jones D., and Modelli A. J. Phys. B: At. Mol. Opt. Phys. 31 (1998) L497
-
(1998)
J. Phys. B: At. Mol. Opt. Phys.
, vol.31
-
-
Dezarnaud-Dandine, C.1
Bournel, F.2
Troncy, M.3
Jones, D.4
Modelli, A.5
-
39
-
-
24944592019
-
-
Seydou M., Modelli A., Lucas B., Konate K., Desfrancois C., and Schermann J.P. Eur. Phys. J. D35 (2005) 199
-
(2005)
Eur. Phys. J.
, vol.D35
, pp. 199
-
-
Seydou, M.1
Modelli, A.2
Lucas, B.3
Konate, K.4
Desfrancois, C.5
Schermann, J.P.6
-
40
-
-
67349192003
-
-
1 first appears in publication in ref
-
R. Hudgins, K. Håkansson, J.P. Quinn, C.L. Hendrickson, A.G. Marshall, in: Proceedings of the 50th ASMS Conference on Mass Spectrometry and Allied Topics, Orlando, Florida, June 2-6, 2002, A020420 (Fig. 1 first appears in publication in ref. 3j).
-
Proceedings of the 50th ASMS Conference on Mass Spectrometry and Allied Topics, Orlando, Florida, June 2-6, 2002, A020420 (Fig
-
-
Hudgins, R.1
Håkansson, K.2
Quinn, J.P.3
Hendrickson, C.L.4
Marshall, A.G.5
-
41
-
-
67349122152
-
-
note
-
1.2 data, we concluded that through-bond electron transfer can occur at a rate capable of yielding S-S bond cleavage if there are up to 7 bonds (aliphatic or olefinic) or ca. 15 Å.
-
-
-
-
42
-
-
35349006874
-
-
Holm A.I.S., Hvelplund P., Kadhane U., Larsen M.K., Liu B., Nielsen S.B., Panja S., Pedersen J.M., Skrydstrup T., Støchkel K., Williams E.R., and Worm E.S. J. Phys. Chem. A 111 (2007) 9641
-
(2007)
J. Phys. Chem. A
, vol.111
, pp. 9641
-
-
Holm, A.I.S.1
Hvelplund, P.2
Kadhane, U.3
Larsen, M.K.4
Liu, B.5
Nielsen, S.B.6
Panja, S.7
Pedersen, J.M.8
Skrydstrup, T.9
Støchkel, K.10
Williams, E.R.11
Worm, E.S.12
-
43
-
-
67349184889
-
-
note
-
+ cation because (a) its presence added little to the computational cost and (b) it was easy to identify electron-attached states in which the electron is bound to this cation (e.g. we could easily see Li 2s and 2p states) and to not confuse them with the Rydberg-bound and SS σ*-bound states we were studying.
-
-
-
-
44
-
-
67349138035
-
-
note
-
+) or 2 eV to 2.4 eV.
-
-
-
-
56
-
-
67349105472
-
-
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Go
-
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian, Inc., Wallingford, CT, 2004.
-
-
-
-
58
-
-
67349170924
-
-
note
-
2.
-
-
-
-
59
-
-
67349116938
-
-
note
-
+ unit were held fixed in order (a) to keep the Coulomb stabilization at the SS bond site fixed and (b) to allow us to simulate the vertical transfer of an ETD electron from the alkyl anion to either the SS σ* orbital or to an ammonium ground- or excited-Rydberg orbital.
-
-
-
-
60
-
-
67349197937
-
-
note
-
-1 dependence of this curve it is difficult to display its asymptotic value on these graphs.
-
-
-
-
61
-
-
67349257301
-
-
note
-
As discussed in Section 2, whenever such a pair of electronic states approach one another, they undergo what is called an avoided crossing. In this and other figures, if the coupling between the two states is strong, one can easily see the two states' energies not actually crossing but "avoiding" one another. If the coupling is very weak, the states appear to actually cross. However, in all of the figures shown in this paper, the states undergo avoided crossings even if the coupling is so small that they seem to actually cross when plotted to the resolution we display. So, whenever we say that two surfaces cross we really mean that they undergo an avoided crossing.
-
-
-
-
62
-
-
67349088875
-
-
note
-
1.2.
-
-
-
-
63
-
-
67349205976
-
-
note
-
To avoid complicating these figures even further we have plotted the energies of states connected to the excited-Rydberg states only in this narrow range of R-values. At large-R their energies are relatively "flat" (i.e. much like that of the ground-Rydberg state) and converge to energies expected for members of such Rydberg progressions.
-
-
-
-
64
-
-
67349096165
-
-
note
-
From Fig. 5 it can be seen that that qualitative nature of the energy profiles of the various states does not depend much on the S-N-C angle so we decided to display just one set of data here.
-
-
-
-
65
-
-
67349135865
-
-
note
-
As noted in Section 2, we employed a larger atomic orbital basis set on the doubly charged model system primarily to allow us to obtain a larger number of Rydberg states. However this enhanced basis set also lowers the energies we obtained for the 3s and 3p Rydberg states due to enhancements in the variational space.
-
-
-
-
66
-
-
67349142459
-
-
note
-
1.2 couplings will be small except for Rydberg orbitals in the n = 3-10 range, not for high-n Rydberg orbitals.
-
-
-
-
67
-
-
67349273144
-
-
note
-
1.2 coupling) with a distant SS σ* or amide π* orbital will be small as explained in ref. [26].
-
-
-
|