-
1
-
-
34250788104
-
-
Leib R.D., Donald W.A., Bush M.F., O'Brien J.T., and Williams E.R. J. Am. Soc. Mass Spectrom. 18 (2007) 1217
-
(2007)
J. Am. Soc. Mass Spectrom.
, vol.18
, pp. 1217
-
-
Leib, R.D.1
Donald, W.A.2
Bush, M.F.3
O'Brien, J.T.4
Williams, E.R.5
-
2
-
-
34247476137
-
-
Leib R.D., Donald W.A., Bush M.F., O'Brien J.T., and Williams E.R. J. Am. Chem. Soc. 129 (2007) 4894
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 4894
-
-
Leib, R.D.1
Donald, W.A.2
Bush, M.F.3
O'Brien, J.T.4
Williams, E.R.5
-
3
-
-
0032279940
-
-
Berg C., Beyer M., Achatz U., Joos S., Niedner-Schatteburg G., and Bondybey V.E. Chem. Phys. 239 (1998) 379
-
(1998)
Chem. Phys.
, vol.239
, pp. 379
-
-
Berg, C.1
Beyer, M.2
Achatz, U.3
Joos, S.4
Niedner-Schatteburg, G.5
Bondybey, V.E.6
-
5
-
-
0001039690
-
-
Sanekata M., Misaizu F., Fuke K., Iwata S., and Hashimoto K. J. Am. Chem. Soc. 117 (1995) 347
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 347
-
-
Sanekata, M.1
Misaizu, F.2
Fuke, K.3
Iwata, S.4
Hashimoto, K.5
-
12
-
-
12344322708
-
-
Anusiewicz I., Berdys J., Sobczyk M., Sawicka A., Skurski P., and Simons J. J. Phys. Chem. A 109 (2005) 250
-
(2005)
J. Phys. Chem. A
, vol.109
, pp. 250
-
-
Anusiewicz, I.1
Berdys, J.2
Sobczyk, M.3
Sawicka, A.4
Skurski, P.5
Simons, J.6
-
17
-
-
53549091652
-
-
2+ to constrain the computational cost of our ab initio calculations. However, as we discuss later, our findings likely help clarify what is going on in all of the alkaline earth dication systems studied in Ref. [1].
-
2+ to constrain the computational cost of our ab initio calculations. However, as we discuss later, our findings likely help clarify what is going on in all of the alkaline earth dication systems studied in Ref. [1].
-
-
-
-
23
-
-
53549115136
-
-
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong
-
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian, Inc., Wallingford CT, 2004.
-
-
-
-
25
-
-
53549106139
-
-
-.
-
-.
-
-
-
-
29
-
-
53549112831
-
-
In Ref. [2] it was pointed out that such orbitals can be involved in binding an electron to the surface of such clusters. From our past works on ECD of positively charged peptides, we believe that the initial electron capture event occurs into an excited Rydberg orbital after which a series of radiative or radiationless relaxation steps occurs, ultimately leading to the ground-Rydberg state shown in Fig. 8.
-
In Ref. [2] it was pointed out that such orbitals can be involved in binding an electron to the surface of such clusters. From our past works on ECD of positively charged peptides, we believe that the initial electron capture event occurs into an excited Rydberg orbital after which a series of radiative or radiationless relaxation steps occurs, ultimately leading to the ground-Rydberg state shown in Fig. 8.
-
-
-
-
30
-
-
0000865946
-
-
Berg C., Achatz U., Beyer M., Joos S., Albert G., Schindler T., Niedner-Schatteburg G., and Bondybey V.E. Int. J. Mass Spectrom. Ion Process. 167/168 (1997) 723
-
(1997)
Int. J. Mass Spectrom. Ion Process.
, vol.167-168
, pp. 723
-
-
Berg, C.1
Achatz, U.2
Beyer, M.3
Joos, S.4
Albert, G.5
Schindler, T.6
Niedner-Schatteburg, G.7
Bondybey, V.E.8
-
33
-
-
4243787417
-
-
Fuke K., Misaizu F., Sanekata M., Tsukamoto K., and Iwata S. Z. Phys. D 26 (1993) 180
-
(1993)
Z. Phys. D
, vol.26
, pp. 180
-
-
Fuke, K.1
Misaizu, F.2
Sanekata, M.3
Tsukamoto, K.4
Iwata, S.5
-
34
-
-
0001039690
-
-
Sanekata M., Misaizu F., Fuke K., Iwata S., and Hashimoto K. J. Am. Chem. Soc. 117 (1995) 747
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 747
-
-
Sanekata, M.1
Misaizu, F.2
Fuke, K.3
Iwata, S.4
Hashimoto, K.5
-
35
-
-
0001576211
-
-
Watanabe H., Iwata S., Hashimoto K., Misaizu F., and Fuke K. J. Am. Chem. Soc. 117 (1995) 755
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 755
-
-
Watanabe, H.1
Iwata, S.2
Hashimoto, K.3
Misaizu, F.4
Fuke, K.5
-
36
-
-
0029740125
-
-
Beyer M., Berg C., Görlitzer H.W., Schindler T., Achatz U., Gilbert G., Niedner-Schatteburg G., and Bondybey V.E. J. Am. Chem. Soc. 118 (1996) 7386
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 7386
-
-
Beyer, M.1
Berg, C.2
Görlitzer, H.W.3
Schindler, T.4
Achatz, U.5
Gilbert, G.6
Niedner-Schatteburg, G.7
Bondybey, V.E.8
-
37
-
-
53549088667
-
-
+ by ca. 15 eV.
-
+ by ca. 15 eV.
-
-
-
-
38
-
-
53549123633
-
-
Specifically, the fact that 10-11 water molecules are boiled off upon electron attachment and knowing that the water-loss energy requirement is ca. 10 kcal/mol for charge-reduced clusters with six or more waters, gives rise to this estimate.
-
Specifically, the fact that 10-11 water molecules are boiled off upon electron attachment and knowing that the water-loss energy requirement is ca. 10 kcal/mol for charge-reduced clusters with six or more waters, gives rise to this estimate.
-
-
-
-
41
-
-
53549105573
-
-
Our earlier studies showed that the character of this Rydberg orbital persists even if second-shell solvent molecules are present. So, although the present study involves only the six first-shell waters, we expect the conclusions drawn to be pertinent to clusters having one or more second-shell waters as well.
-
Our earlier studies showed that the character of this Rydberg orbital persists even if second-shell solvent molecules are present. So, although the present study involves only the six first-shell waters, we expect the conclusions drawn to be pertinent to clusters having one or more second-shell waters as well.
-
-
-
-
42
-
-
53549127042
-
-
We had difficulty converging the Hartree-Fock orbital optimization process for the Rydberg-attached state beyond 1.3 Å, so the points shown as open squares were obtained by subtracting the (essentially constant) 5 eV energy spacing between the parent and Rydberg-attached states from the energy of the parent at these longer bond lengths.
-
We had difficulty converging the Hartree-Fock orbital optimization process for the Rydberg-attached state beyond 1.3 Å, so the points shown as open squares were obtained by subtracting the (essentially constant) 5 eV energy spacing between the parent and Rydberg-attached states from the energy of the parent at these longer bond lengths.
-
-
-
-
43
-
-
53549092185
-
-
We use the relaxed σ*-curve to reach this conclusion because we assume this process will occur after the ca. 5 eV released in the electron capture event has been randomized among the cluster's vibrational modes. Because the geometry of the Rydberg-attached state does not undergo much geometrical change upon electron attachment, we assume that the Rydberg-state curve shown in Fig. 10 (which has the cluster at the parent's geometry) is equally valid for the geometry-relaxed Rydberg state.
-
We use the relaxed σ*-curve to reach this conclusion because we assume this process will occur after the ca. 5 eV released in the electron capture event has been randomized among the cluster's vibrational modes. Because the geometry of the Rydberg-attached state does not undergo much geometrical change upon electron attachment, we assume that the Rydberg-state curve shown in Fig. 10 (which has the cluster at the parent's geometry) is equally valid for the geometry-relaxed Rydberg state.
-
-
-
-
44
-
-
53549091082
-
-
The ionic radii of alkaline earth dications range from 0.41 Å and 0.86 Å for Be and Mg to 1.49 Å for Ba.
-
The ionic radii of alkaline earth dications range from 0.41 Å and 0.86 Å for Be and Mg to 1.49 Å for Ba.
-
-
-
|