메뉴 건너뛰기




Volumn 16, Issue 7, 2009, Pages 842-851

Prediction of Malignant Breast Lesions from MRI Features. A Comparison of Artificial Neural Network and Logistic Regression Techniques

Author keywords

Artificial Neural Network; Breast Cancer Diagnostic Model; Logistic Regression

Indexed keywords

GADODIAMIDE;

EID: 67349120047     PISSN: 10766332     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.acra.2009.01.029     Document Type: Article
Times cited : (77)

References (40)
  • 1
    • 29944447410 scopus 로고    scopus 로고
    • A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images
    • Chen W., Giger M.L., and Bick U. A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images. Acad Radiol 13 (2006) 63-72
    • (2006) Acad Radiol , vol.13 , pp. 63-72
    • Chen, W.1    Giger, M.L.2    Bick, U.3
  • 2
    • 33746617896 scopus 로고    scopus 로고
    • Automatic identification and classification of characteristic kinetic curves of breast lesions on DCE-MRI
    • Chen W., Giger M.L., Bick U., et al. Automatic identification and classification of characteristic kinetic curves of breast lesions on DCE-MRI. Med Phys 33 (2006) 2878-2887
    • (2006) Med Phys , vol.33 , pp. 2878-2887
    • Chen, W.1    Giger, M.L.2    Bick, U.3
  • 3
    • 2442660323 scopus 로고    scopus 로고
    • Computerized interpretation of breast MRI: investigation of enhancement-variance dynamics
    • Chen W., Giger M.L., Lan L., et al. Computerized interpretation of breast MRI: investigation of enhancement-variance dynamics. Med Phys 31 (2004) 1076-1082
    • (2004) Med Phys , vol.31 , pp. 1076-1082
    • Chen, W.1    Giger, M.L.2    Lan, L.3
  • 4
    • 33645697155 scopus 로고    scopus 로고
    • Breast lesion analysis of shape technique: semiautomated vs. manual morphological description
    • Liney G.P., Sreenivas M., Gibbs P., et al. Breast lesion analysis of shape technique: semiautomated vs. manual morphological description. J Magn Reson Imaging 23 (2006) 493-498
    • (2006) J Magn Reson Imaging , vol.23 , pp. 493-498
    • Liney, G.P.1    Sreenivas, M.2    Gibbs, P.3
  • 5
    • 33846190665 scopus 로고    scopus 로고
    • Breast MRI lesion classification: improved performance of human readers with a backpropagation neural network computer-aided diagnosis (CAD) system
    • Meinel L.A., Stolpen A.H., Berbaum K.S., et al. Breast MRI lesion classification: improved performance of human readers with a backpropagation neural network computer-aided diagnosis (CAD) system. J Magn Reson Imaging 25 (2007) 89-95
    • (2007) J Magn Reson Imaging , vol.25 , pp. 89-95
    • Meinel, L.A.1    Stolpen, A.H.2    Berbaum, K.S.3
  • 6
    • 0032894301 scopus 로고    scopus 로고
    • Utility of magnetic resonance imaging in the management of breast cancer: evidence for improved preoperative staging
    • Esserman L., Hylton N., Yassa L., et al. Utility of magnetic resonance imaging in the management of breast cancer: evidence for improved preoperative staging. J Clin Oncol 17 (1999) 110-119
    • (1999) J Clin Oncol , vol.17 , pp. 110-119
    • Esserman, L.1    Hylton, N.2    Yassa, L.3
  • 7
    • 0032750637 scopus 로고    scopus 로고
    • Breast carcinoma: effect of preoperative contrast-enhanced MR imaging on the therapeutic approach
    • Fischer U., Kopka L., and Grabbe E. Breast carcinoma: effect of preoperative contrast-enhanced MR imaging on the therapeutic approach. Radiology 213 (1999) 881-888
    • (1999) Radiology , vol.213 , pp. 881-888
    • Fischer, U.1    Kopka, L.2    Grabbe, E.3
  • 8
    • 0030788902 scopus 로고    scopus 로고
    • Staging of symptomatic primary breast cancer with MR imaging
    • Mumtaz H., Hall-Craggs M.A., Davidson T., et al. Staging of symptomatic primary breast cancer with MR imaging. AJR Am J Roentgenol 169 (1997) 417-424
    • (1997) AJR Am J Roentgenol , vol.169 , pp. 417-424
    • Mumtaz, H.1    Hall-Craggs, M.A.2    Davidson, T.3
  • 9
    • 0036775586 scopus 로고    scopus 로고
    • Pre-operative staging of invasive breast cancer with MR mammography and/or PET: boon or bunk?
    • Rieber A., Schirrmeister H., Gabelmann A., et al. Pre-operative staging of invasive breast cancer with MR mammography and/or PET: boon or bunk?. Br J Radiol 75 (2002) 789-798
    • (2002) Br J Radiol , vol.75 , pp. 789-798
    • Rieber, A.1    Schirrmeister, H.2    Gabelmann, A.3
  • 10
    • 2542548039 scopus 로고    scopus 로고
    • Contrast-enhanced MR imaging of breast lesions and effect on treatment
    • Schelfout K., Van Goethem M., Kersschot E., et al. Contrast-enhanced MR imaging of breast lesions and effect on treatment. Eur J Surg Oncol 30 (2004) 501-507
    • (2004) Eur J Surg Oncol , vol.30 , pp. 501-507
    • Schelfout, K.1    Van Goethem, M.2    Kersschot, E.3
  • 11
    • 0036357505 scopus 로고    scopus 로고
    • The role of contrast-enhanced MR mammography for determining candidates for breast conservation surgery
    • Zhang Y., Fukatsu H., Naganawa S., et al. The role of contrast-enhanced MR mammography for determining candidates for breast conservation surgery. Breast Cancer 9 (2002) 231-239
    • (2002) Breast Cancer , vol.9 , pp. 231-239
    • Zhang, Y.1    Fukatsu, H.2    Naganawa, S.3
  • 12
    • 0031657391 scopus 로고    scopus 로고
    • Computerized analysis of breast lesions in three dimensions using dynamic magnetic-resonance imaging
    • Gilhuijs K.G., Giger M.L., and Bick U. Computerized analysis of breast lesions in three dimensions using dynamic magnetic-resonance imaging. Med Phys 25 (1998) 1647-1654
    • (1998) Med Phys , vol.25 , pp. 1647-1654
    • Gilhuijs, K.G.1    Giger, M.L.2    Bick, U.3
  • 13
    • 0035664268 scopus 로고    scopus 로고
    • Stepwise logistic regression analysis of tumor contour features for breast ultrasound diagnosis
    • Chou Y.H., Tiu C.M., Hung G.S., et al. Stepwise logistic regression analysis of tumor contour features for breast ultrasound diagnosis. Ultrasound Med Biol 27 (2001) 1493-1498
    • (2001) Ultrasound Med Biol , vol.27 , pp. 1493-1498
    • Chou, Y.H.1    Tiu, C.M.2    Hung, G.S.3
  • 14
    • 0030996609 scopus 로고    scopus 로고
    • Computerized classification of malignant and benign microcalcifications on mammograms: texture analysis using an artificial neural network
    • Chan H.P., Sahiner B., Petrick N., et al. Computerized classification of malignant and benign microcalcifications on mammograms: texture analysis using an artificial neural network. Phys Med Biol 42 (1997) 549-567
    • (1997) Phys Med Biol , vol.42 , pp. 549-567
    • Chan, H.P.1    Sahiner, B.2    Petrick, N.3
  • 15
    • 0035871395 scopus 로고    scopus 로고
    • Comparison of artificial neural networks with other statistical approaches
    • Sargent D.J. Comparison of artificial neural networks with other statistical approaches. Cancer 91 (2001) 1636-1642
    • (2001) Cancer , vol.91 , pp. 1636-1642
    • Sargent, D.J.1
  • 16
    • 0030297904 scopus 로고    scopus 로고
    • Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
    • Tu J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 49 (1996) 1225-1231
    • (1996) J Clin Epidemiol , vol.49 , pp. 1225-1231
    • Tu, J.V.1
  • 17
    • 17044428072 scopus 로고    scopus 로고
    • Comparative analysis of logistic regression and artificial neural network for computer-aided diagnosis of beast masses
    • Song J.H., Venkatesh S.S., Conant E.A., et al. Comparative analysis of logistic regression and artificial neural network for computer-aided diagnosis of beast masses. Acad Radiol 12 (2005) 487-495
    • (2005) Acad Radiol , vol.12 , pp. 487-495
    • Song, J.H.1    Venkatesh, S.S.2    Conant, E.A.3
  • 18
    • 55349148361 scopus 로고    scopus 로고
    • Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI
    • Nie K., Chen J.-H., Yu H.J., et al. Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI. Acad Radiol 15 (2008) 1513-1525
    • (2008) Acad Radiol , vol.15 , pp. 1513-1525
    • Nie, K.1    Chen, J.-H.2    Yu, H.J.3
  • 20
    • 85054952615 scopus 로고
    • Rapid texture identification
    • Society of Photo-Optical Instrumentation Engineers, San Diego, CA
    • Laws K.I. Rapid texture identification. Image processing for missile guidance (1980), Society of Photo-Optical Instrumentation Engineers, San Diego, CA 376-380
    • (1980) Image processing for missile guidance , pp. 376-380
    • Laws, K.I.1
  • 22
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
    • DeLong E.R., DeLong D.M., and Clarke-Pearson D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44 (1988) 837-845
    • (1988) Biometrics , vol.44 , pp. 837-845
    • DeLong, E.R.1    DeLong, D.M.2    Clarke-Pearson, D.L.3
  • 25
    • 84944363874 scopus 로고
    • Evaluating the yield of medical tests
    • Harrell F.E., Cadiff R.M., Pryor D.B., et al. Evaluating the yield of medical tests. JAMA 247 (1982) 2543-2546
    • (1982) JAMA , vol.247 , pp. 2543-2546
    • Harrell, F.E.1    Cadiff, R.M.2    Pryor, D.B.3
  • 26
    • 34249670253 scopus 로고    scopus 로고
    • A risk model for prediction of lung cancer
    • Spitz M.R., Hong W.K., Amos C.I., et al. A risk model for prediction of lung cancer. J Natl Cancer Inst 99 (2007) 715-726
    • (2007) J Natl Cancer Inst , vol.99 , pp. 715-726
    • Spitz, M.R.1    Hong, W.K.2    Amos, C.I.3
  • 28
    • 77956887506 scopus 로고
    • A note on a general definition of the coefficient of determination
    • Nagelkerke N.J.D. A note on a general definition of the coefficient of determination. Biometrika 78 (1991) 691-692
    • (1991) Biometrika , vol.78 , pp. 691-692
    • Nagelkerke, N.J.D.1
  • 29
    • 33745220578 scopus 로고    scopus 로고
    • Risk factor identification and mortality prediction in cardiac surgery using artificial neural networks
    • Nilsson J., Ohlsson M., Thulin L., et al. Risk factor identification and mortality prediction in cardiac surgery using artificial neural networks. J Thorac Cardiovasc Surg 132 (2006) 12-19
    • (2006) J Thorac Cardiovasc Surg , vol.132 , pp. 12-19
    • Nilsson, J.1    Ohlsson, M.2    Thulin, L.3
  • 30
    • 0035116142 scopus 로고    scopus 로고
    • Predicting hospital mortality for patients in the intensive care unit: a comparison of artificial neural networks with logistic regression models
    • Clermont G., Angus D.C., DiRusso S.M., et al. Predicting hospital mortality for patients in the intensive care unit: a comparison of artificial neural networks with logistic regression models. Crit Care Med 29 (2001) 291-296
    • (2001) Crit Care Med , vol.29 , pp. 291-296
    • Clermont, G.1    Angus, D.C.2    DiRusso, S.M.3
  • 31
    • 19344364327 scopus 로고    scopus 로고
    • Predicting breast cancer survivability: a comparison of three data mining methods
    • Delen D., Walker G., and Kadam A. Predicting breast cancer survivability: a comparison of three data mining methods. Artif Intell Med 34 (2005) 113-127
    • (2005) Artif Intell Med , vol.34 , pp. 113-127
    • Delen, D.1    Walker, G.2    Kadam, A.3
  • 32
    • 15844411613 scopus 로고    scopus 로고
    • Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room
    • Jaimes F., Farbiarz J., Alvarez D., et al. Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room. Crit Care 9 (2005) R150-R156
    • (2005) Crit Care , vol.9
    • Jaimes, F.1    Farbiarz, J.2    Alvarez, D.3
  • 33
    • 0032730109 scopus 로고    scopus 로고
    • Artificial neural networks applied to survival prediction in breast cancer
    • Lundin M., Lundin J., Burke H.B., et al. Artificial neural networks applied to survival prediction in breast cancer. Oncology 57 (1999) 281-286
    • (1999) Oncology , vol.57 , pp. 281-286
    • Lundin, M.1    Lundin, J.2    Burke, H.B.3
  • 35
    • 0041382897 scopus 로고    scopus 로고
    • External validity of predictive models: a comparison of logistic regression, classification trees, and neural networks
    • Terrin N., Schmid C.H., Griffith J.L., et al. External validity of predictive models: a comparison of logistic regression, classification trees, and neural networks. J Clin Epidemiol 56 (2003) 721-729
    • (2003) J Clin Epidemiol , vol.56 , pp. 721-729
    • Terrin, N.1    Schmid, C.H.2    Griffith, J.L.3
  • 36
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: improvement on cross-validation
    • Efron B. Estimating the error rate of a prediction rule: improvement on cross-validation. J Am Stat Assoc 78 (1983) 316-331
    • (1983) J Am Stat Assoc , vol.78 , pp. 316-331
    • Efron, B.1
  • 37
    • 0000343716 scopus 로고
    • Submodel selection and evaluation in regression. The X-random case
    • Breiman L., and Spector P. Submodel selection and evaluation in regression. The X-random case. Int Stat Rev 60 (1992) 291-319
    • (1992) Int Stat Rev , vol.60 , pp. 291-319
    • Breiman, L.1    Spector, P.2
  • 39
    • 1842860122 scopus 로고    scopus 로고
    • Understanding the collinearity problem in regression and discriminant analysis
    • Næs T., and Mevik B.-H. Understanding the collinearity problem in regression and discriminant analysis. J Chemometr 15 (2001) 413-426
    • (2001) J Chemometr , vol.15 , pp. 413-426
    • Næs, T.1    Mevik, B.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.