-
3
-
-
84911263845
-
Launching a Davydov soliton: I. Soliton analysis
-
Scott A.C. Launching a Davydov soliton: I. Soliton analysis. Phys Scr 29 (1984) 279-283
-
(1984)
Phys Scr
, vol.29
, pp. 279-283
-
-
Scott, A.C.1
-
5
-
-
0031998569
-
Enhanced pulse compression in a nonlinear fiber by a wavelength division multiplexed optical pulse
-
Yeh C., and Bergman L. Enhanced pulse compression in a nonlinear fiber by a wavelength division multiplexed optical pulse. Phys Rev E 57 (1998) 2398-2404
-
(1998)
Phys Rev E
, vol.57
, pp. 2398-2404
-
-
Yeh, C.1
Bergman, L.2
-
7
-
-
0025961799
-
Fourth order nonlinear evolution equation for two Stokes wave trains in deep water
-
Dhar A.K., and Dhas K.P. Fourth order nonlinear evolution equation for two Stokes wave trains in deep water. Phys Fluids A 3 (1991) 3021-3026
-
(1991)
Phys Fluids A
, vol.3
, pp. 3021-3026
-
-
Dhar, A.K.1
Dhas, K.P.2
-
8
-
-
33845463684
-
Deterministic quantum mechanics versus classical mechanical indeterminism
-
El Naschie M.S. Deterministic quantum mechanics versus classical mechanical indeterminism. Int J Nonlinear Sci Numer Simul 8 1 (2007) 1-6
-
(2007)
Int J Nonlinear Sci Numer Simul
, vol.8
, Issue.1
, pp. 1-6
-
-
El Naschie, M.S.1
-
9
-
-
4043107206
-
Periodic solutions for systems of coupled nonlinear Schrödinger equations with three and four components
-
Chow K.W., and Lai D.W.C. Periodic solutions for systems of coupled nonlinear Schrödinger equations with three and four components. Phys Rev E 68 (2003) 017601
-
(2003)
Phys Rev E
, vol.68
, pp. 017601
-
-
Chow, K.W.1
Lai, D.W.C.2
-
10
-
-
0033887768
-
Coupled-mode envelope solitary waves in a pair of cubic Schrödinger equations with cross modulation: analytical solutions and collisions with applications to Rossby waves
-
Tan B., and Boyd J.P. Coupled-mode envelope solitary waves in a pair of cubic Schrödinger equations with cross modulation: analytical solutions and collisions with applications to Rossby waves. Chaos, Solitons & Fractals 11 (2000) 1113-1129
-
(2000)
Chaos, Solitons & Fractals
, vol.11
, pp. 1113-1129
-
-
Tan, B.1
Boyd, J.P.2
-
11
-
-
40649100751
-
A study on linear and nonlinear Schrodinger equations by the variational iteration method
-
Wazwaz A.-M. A study on linear and nonlinear Schrodinger equations by the variational iteration method. Chaos, Solitons & Fractals 37 (2008) 1136-1142
-
(2008)
Chaos, Solitons & Fractals
, vol.37
, pp. 1136-1142
-
-
Wazwaz, A.-M.1
-
12
-
-
22344439519
-
Compression, splitting and switching of bright and dark solitons in nonlinear directional coupler
-
Mandal B., and Chowdhury A.R. Compression, splitting and switching of bright and dark solitons in nonlinear directional coupler. Chaos, Solitons & Fractals 27 (2006) 103-113
-
(2006)
Chaos, Solitons & Fractals
, vol.27
, pp. 103-113
-
-
Mandal, B.1
Chowdhury, A.R.2
-
13
-
-
0028766065
-
Symplectic methods for the nonlinear Schrödinger equation
-
Herbst B.M., Varadi F., and Ablowitz M.J. Symplectic methods for the nonlinear Schrödinger equation. Math Comput Simul 37 (1994) 353-369
-
(1994)
Math Comput Simul
, vol.37
, pp. 353-369
-
-
Herbst, B.M.1
Varadi, F.2
Ablowitz, M.J.3
-
14
-
-
0036532037
-
Symplectic and multisymplectic methods for the nonlinear Schrödinger equation
-
Chen J.B., and Qin M.Z. Symplectic and multisymplectic methods for the nonlinear Schrödinger equation. Comput Math Appl 43 (2002) 1095-1106
-
(2002)
Comput Math Appl
, vol.43
, pp. 1095-1106
-
-
Chen, J.B.1
Qin, M.Z.2
-
15
-
-
3242702916
-
On the preservation of phase structure under multi-symplectic discretization
-
Islas A.L., and Schober C.M. On the preservation of phase structure under multi-symplectic discretization. J Comput Phys 197 (2004) 585-609
-
(2004)
J Comput Phys
, vol.197
, pp. 585-609
-
-
Islas, A.L.1
Schober, C.M.2
-
16
-
-
4344660059
-
Numerical study of the soliton waves of the coupled nonlinear Schrödinger system
-
Sun J.Q., Gu X.Y., and Ma Z.Q. Numerical study of the soliton waves of the coupled nonlinear Schrödinger system. Physica D 196 (2004) 311-328
-
(2004)
Physica D
, vol.196
, pp. 311-328
-
-
Sun, J.Q.1
Gu, X.Y.2
Ma, Z.Q.3
-
17
-
-
0142216144
-
Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system
-
Sun J.Q., and Qin M.Z. Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system. Comput Phys Commun 155 (2003) 221-235
-
(2003)
Comput Phys Commun
, vol.155
, pp. 221-235
-
-
Sun, J.Q.1
Qin, M.Z.2
-
18
-
-
0035148686
-
Stability and long time evolution of the periodic solution to the two coupled nonlinear Schrödinger equations
-
Tan B., and Boyd J.P. Stability and long time evolution of the periodic solution to the two coupled nonlinear Schrödinger equations. Chaos, Solitons & Fractals 12 (2001) 721-734
-
(2001)
Chaos, Solitons & Fractals
, vol.12
, pp. 721-734
-
-
Tan, B.1
Boyd, J.P.2
-
19
-
-
3142686141
-
The evolution of periodic waves of the coupled nonlinear Schrödinger equations
-
Tsang S.C., and Chow K.W. The evolution of periodic waves of the coupled nonlinear Schrödinger equations. Math Comput Simul 66 (2004) 551-564
-
(2004)
Math Comput Simul
, vol.66
, pp. 551-564
-
-
Tsang, S.C.1
Chow, K.W.2
-
22
-
-
0000763166
-
On the theory of two-dimensional stationary self-focusing of electromagnetic waves
-
[English Trans.]
-
Manakov S.V. On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov Phys JEPT 38 (1974) 248-253 [English Trans.]
-
(1974)
Sov Phys JEPT
, vol.38
, pp. 248-253
-
-
Manakov, S.V.1
-
23
-
-
0000981501
-
To the integrability of the system of two coupled nonlinear Schrödinger equations
-
Zakharov V.E., and Schulman E.I. To the integrability of the system of two coupled nonlinear Schrödinger equations. Physica D 4 (1982) 270-274
-
(1982)
Physica D
, vol.4
, pp. 270-274
-
-
Zakharov, V.E.1
Schulman, E.I.2
-
24
-
-
20444493173
-
On the Painlevé integrability, periodic wave solutions and soliton solutions of generalized coupled higher-order nonlinear Schrödinger equations
-
Xu G.Q., and Li Z.B. On the Painlevé integrability, periodic wave solutions and soliton solutions of generalized coupled higher-order nonlinear Schrödinger equations. Chaos, Solitons & Fractals 26 (2005) 1363-1375
-
(2005)
Chaos, Solitons & Fractals
, vol.26
, pp. 1363-1375
-
-
Xu, G.Q.1
Li, Z.B.2
-
25
-
-
33745868758
-
Cnoidal and solitary wave solutions of the coupled higher order nonlinear Schrödinger equation in nonlinear optics
-
Porsezian K., and Kalithasan B. Cnoidal and solitary wave solutions of the coupled higher order nonlinear Schrödinger equation in nonlinear optics. Chaos, Solitons & Fractals 31 (2007) 188-196
-
(2007)
Chaos, Solitons & Fractals
, vol.31
, pp. 188-196
-
-
Porsezian, K.1
Kalithasan, B.2
-
26
-
-
0035962956
-
Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations
-
Kanna T., and Lakshmanan M. Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations. Phys Rev Lett 86 (2001) 5043-5046
-
(2001)
Phys Rev Lett
, vol.86
, pp. 5043-5046
-
-
Kanna, T.1
Lakshmanan, M.2
-
27
-
-
67649757120
-
On the solution of multicomponent nonlinear Schrödinger equations
-
Kanna T., Tsoy E.N., and Akhmediev N. On the solution of multicomponent nonlinear Schrödinger equations. Phys Lett A 330 (2004) 224-229
-
(2004)
Phys Lett A
, vol.330
, pp. 224-229
-
-
Kanna, T.1
Tsoy, E.N.2
Akhmediev, N.3
-
28
-
-
0000456420
-
Partially coherent solitons of variable shape in a slow Kerr-like medium: exact solutions
-
Ankiewicz A., Krolikowski W., and Akhmediev N.N. Partially coherent solitons of variable shape in a slow Kerr-like medium: exact solutions. Phys Rev E 59 (1999) 6079-6087
-
(1999)
Phys Rev E
, vol.59
, pp. 6079-6087
-
-
Ankiewicz, A.1
Krolikowski, W.2
Akhmediev, N.N.3
-
30
-
-
0035475051
-
Exact dark soliton solitions for a family of N coupled nonlinear Schrödinger equations in optical fiber media
-
Nakkeeran K. Exact dark soliton solitions for a family of N coupled nonlinear Schrödinger equations in optical fiber media. Phys Rev E 64 (2001) 046611
-
(2001)
Phys Rev E
, vol.64
, pp. 046611
-
-
Nakkeeran, K.1
-
32
-
-
33646271105
-
Numerical methods for Hamiltonian PDEs
-
Bridges T.J., and Reich S. Numerical methods for Hamiltonian PDEs. J Phys A: Math Gen 39 (2006) 5287-5320
-
(2006)
J Phys A: Math Gen
, vol.39
, pp. 5287-5320
-
-
Bridges, T.J.1
Reich, S.2
-
33
-
-
33947200291
-
A survey on symplectic and multi-symplectic algorithms
-
Kong L., Liu R., and Zheng X. A survey on symplectic and multi-symplectic algorithms. Appl Math Comput 186 (2007) 670-684
-
(2007)
Appl Math Comput
, vol.186
, pp. 670-684
-
-
Kong, L.1
Liu, R.2
Zheng, X.3
-
35
-
-
19044372348
-
Backward error analysis for multisymplectic discretization of Hamiltonian PDEs
-
Islas A.L., and Schober C.M. Backward error analysis for multisymplectic discretization of Hamiltonian PDEs. Math Comput Simul 69 (2005) 290-303
-
(2005)
Math Comput Simul
, vol.69
, pp. 290-303
-
-
Islas, A.L.1
Schober, C.M.2
-
36
-
-
0242339583
-
Backward error analysis for multi-symplectic integration methods
-
Moore B., and Reich S. Backward error analysis for multi-symplectic integration methods. Numer Math 95 (2003) 625-652
-
(2003)
Numer Math
, vol.95
, pp. 625-652
-
-
Moore, B.1
Reich, S.2
-
37
-
-
1042304391
-
Multisymplectic box schemes and the Korteweg-de Vries equation
-
Ascher U., and McLachlan R. Multisymplectic box schemes and the Korteweg-de Vries equation. Appl Numer Math 48 (2004) 255-269
-
(2004)
Appl Numer Math
, vol.48
, pp. 255-269
-
-
Ascher, U.1
McLachlan, R.2
-
38
-
-
0034640067
-
Multisymplectic geometry and multisymplectic Preissman scheme for the KdV equation
-
Zhao P.F., and Qin M.Z. Multisymplectic geometry and multisymplectic Preissman scheme for the KdV equation. J Phys A: Math Gen 33 (2000) 3613-3626
-
(2000)
J Phys A: Math Gen
, vol.33
, pp. 3613-3626
-
-
Zhao, P.F.1
Qin, M.Z.2
-
39
-
-
67651163723
-
-
Aydi{dotless}n A, Karasözen B. Multi-symplectic integration of coupled nonlinear Schrödinger system with soliton solutions. Int J Comput Math [accepted for publication], doi:10.1080/00207160701713615.
-
Aydi{dotless}n A, Karasözen B. Multi-symplectic integration of coupled nonlinear Schrödinger system with soliton solutions. Int J Comput Math [accepted for publication], doi:10.1080/00207160701713615.
-
-
-
-
40
-
-
67349176181
-
-
Aydi{dotless}n A. Geometric integrators for coupled nonlinear Schrödinger equation. Ph.D. thesis, Department of Mathematics, Middle East Technical University; 2005. p. 34-5.
-
Aydi{dotless}n A. Geometric integrators for coupled nonlinear Schrödinger equation. Ph.D. thesis, Department of Mathematics, Middle East Technical University; 2005. p. 34-5.
-
-
-
-
41
-
-
0026869280
-
New kinds of periodical waves in birefringent optical fibers
-
Kostov N.A., and Uzunov I.M. New kinds of periodical waves in birefringent optical fibers. Opt Commun 89 (1992) 389-392
-
(1992)
Opt Commun
, vol.89
, pp. 389-392
-
-
Kostov, N.A.1
Uzunov, I.M.2
-
42
-
-
37649032160
-
Periodic solutions of coupled nonlinear Schrödinger equations with five and six components
-
Chow K.W., and Lai D.W.C. Periodic solutions of coupled nonlinear Schrödinger equations with five and six components. Phys Rev E 65 (2003) 026613
-
(2003)
Phys Rev E
, vol.65
, pp. 026613
-
-
Chow, K.W.1
Lai, D.W.C.2
-
43
-
-
34548321103
-
Symplectic and multi-symplectic methods for coupled nonlinear Schrödinger equations with periodic solutions
-
Aydi{dotless}n A., and Karasözen B. Symplectic and multi-symplectic methods for coupled nonlinear Schrödinger equations with periodic solutions. Comput Phys Commun 177 (2007) 566-583
-
(2007)
Comput Phys Commun
, vol.177
, pp. 566-583
-
-
Aydin, A.1
Karasözen, B.2
-
44
-
-
0035582791
-
The symplectic Evans matrix and the instability of solitary waves and fronts
-
Bridges T.J., and Derks G. The symplectic Evans matrix and the instability of solitary waves and fronts. Arch Rat Mech Anal 156 (2001) 1-87
-
(2001)
Arch Rat Mech Anal
, vol.156
, pp. 1-87
-
-
Bridges, T.J.1
Derks, G.2
-
45
-
-
0037832748
-
Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity
-
Bridges T.J., and Reich S. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity. Phys Lett A 284 (2001) 184-193
-
(2001)
Phys Lett A
, vol.284
, pp. 184-193
-
-
Bridges, T.J.1
Reich, S.2
-
46
-
-
0007602404
-
Bilinearization of coupled nonlinear Schrödinger type equations: integrability and solitons
-
Porsezian K. Bilinearization of coupled nonlinear Schrödinger type equations: integrability and solitons. J Nonlinear Math Phys 5 2 (1998) 126-131
-
(1998)
J Nonlinear Math Phys
, vol.5
, Issue.2
, pp. 126-131
-
-
Porsezian, K.1
-
47
-
-
0032476963
-
Multi-symplectic geometry, variational integrators, and nonlinear PDEs
-
Marsden J., Partick G.W., and Shkoller S. Multi-symplectic geometry, variational integrators, and nonlinear PDEs. Commun Math Phys 199 (1998) 351-395
-
(1998)
Commun Math Phys
, vol.199
, pp. 351-395
-
-
Marsden, J.1
Partick, G.W.2
Shkoller, S.3
-
48
-
-
2942515543
-
Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations
-
Reich S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations. J Comput Phys 156 (1999) 1-27
-
(1999)
J Comput Phys
, vol.156
, pp. 1-27
-
-
Reich, S.1
-
49
-
-
0037195882
-
Multisymplectic Schemes for the nonlinear Klein-Gordon equation
-
Wang Y.S., and Qin M.Z. Multisymplectic Schemes for the nonlinear Klein-Gordon equation. Math Comput Model 36 (2002) 963-977
-
(2002)
Math Comput Model
, vol.36
, pp. 963-977
-
-
Wang, Y.S.1
Qin, M.Z.2
-
50
-
-
0036644593
-
A multisymplectic variational integrator for the nonlinear Schrödinger equation
-
Chen J.B., and Qin M.Z. A multisymplectic variational integrator for the nonlinear Schrödinger equation. Numer Methods PDEs 18 (2002) 523-536
-
(2002)
Numer Methods PDEs
, vol.18
, pp. 523-536
-
-
Chen, J.B.1
Qin, M.Z.2
-
51
-
-
0023995477
-
Stability of plane wave solutions of nonlinear systems
-
Newton P.K., and Keller J.B. Stability of plane wave solutions of nonlinear systems. Wave Motion 10 (1988) 183-191
-
(1988)
Wave Motion
, vol.10
, pp. 183-191
-
-
Newton, P.K.1
Keller, J.B.2
-
52
-
-
84974336691
-
The disintegration of wave trains on deep water. Part I. Theory
-
Benjamin T.B., and Feir J.E. The disintegration of wave trains on deep water. Part I. Theory. J Fluid Mech 27 (1967) 417-430
-
(1967)
J Fluid Mech
, vol.27
, pp. 417-430
-
-
Benjamin, T.B.1
Feir, J.E.2
-
53
-
-
0035921958
-
Nonlinear physics - déjá vu in optics
-
Akhmediev N.N. Nonlinear physics - déjá vu in optics. Nature 413 (2001) 267-268
-
(2001)
Nature
, vol.413
, pp. 267-268
-
-
Akhmediev, N.N.1
|