-
1
-
-
0000763166
-
On the theory of two-dimensional stationary self-focusing of electromagnetic waves
-
Manakov S.V. On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov. Phys. JETP 38 (1974) 248
-
(1974)
Sov. Phys. JETP
, vol.38
, pp. 248
-
-
Manakov, S.V.1
-
2
-
-
84919457647
-
Stability of solitons in birefringent optical fibers
-
Menyuk C.R. Stability of solitons in birefringent optical fibers. J. Opt. Soc. Amer. B 5 (1988) 392
-
(1988)
J. Opt. Soc. Amer. B
, vol.5
, pp. 392
-
-
Menyuk, C.R.1
-
3
-
-
0030455121
-
Collision interactions of envelope Rossby solitons in a barometric atmosphere
-
Tan B. Collision interactions of envelope Rossby solitons in a barometric atmosphere. J. Atmos. Sci. 53 (1996) 1604
-
(1996)
J. Atmos. Sci.
, vol.53
, pp. 1604
-
-
Tan, B.1
-
4
-
-
0029412913
-
Collision interactions of solitons in a barometric atmosphere
-
Tan B., and Liu S. Collision interactions of solitons in a barometric atmosphere. J. Atmos. Sci. 52 (1995) 1501
-
(1995)
J. Atmos. Sci.
, vol.52
, pp. 1501
-
-
Tan, B.1
Liu, S.2
-
5
-
-
0035148686
-
Stability and long time evolution the periodic solutions of the two coupled nonlinear Schrödinger equations
-
Tan B., and Boyd J.P. Stability and long time evolution the periodic solutions of the two coupled nonlinear Schrödinger equations. Chaos Solitons Fractals 12 (2001) 721
-
(2001)
Chaos Solitons Fractals
, vol.12
, pp. 721
-
-
Tan, B.1
Boyd, J.P.2
-
6
-
-
3142686141
-
The evolution of periodic waves of the coupled nonlinear Schrödinger equations
-
Tsang S.C., and Chow K.W. The evolution of periodic waves of the coupled nonlinear Schrödinger equations. Math. Comput. Simulation 66 (2004) 551
-
(2004)
Math. Comput. Simulation
, vol.66
, pp. 551
-
-
Tsang, S.C.1
Chow, K.W.2
-
7
-
-
0000981501
-
To the integrability of the system of two coupled nonlinear Schrödinger equations
-
Zakharov V.E., and Schulman E.L. To the integrability of the system of two coupled nonlinear Schrödinger equations. Physica D 4 (1982) 270
-
(1982)
Physica D
, vol.4
, pp. 270
-
-
Zakharov, V.E.1
Schulman, E.L.2
-
8
-
-
4344660059
-
Numerical study of the soliton waves of the coupled nonlinear Schrödinger system
-
Sun J.Q., Gu X.Y., and Ma Z.Q. Numerical study of the soliton waves of the coupled nonlinear Schrödinger system. Physica D 196 (2004) 311
-
(2004)
Physica D
, vol.196
, pp. 311
-
-
Sun, J.Q.1
Gu, X.Y.2
Ma, Z.Q.3
-
9
-
-
0142216144
-
Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system
-
Sun J.Q., and Qin M.Z. Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system. Comput. Phys. Comm. 155 (2003) 221
-
(2003)
Comput. Phys. Comm.
, vol.155
, pp. 221
-
-
Sun, J.Q.1
Qin, M.Z.2
-
10
-
-
33645522650
-
Conserved quantities of some Hamiltonian wave equations after full discretization
-
Cano B. Conserved quantities of some Hamiltonian wave equations after full discretization. Numer. Math. 103 (2006) 197
-
(2006)
Numer. Math.
, vol.103
, pp. 197
-
-
Cano, B.1
-
11
-
-
33646271105
-
Numerical methods for Hamiltonian PDEs
-
Bridges T.J., and Reich S. Numerical methods for Hamiltonian PDEs. J. Phys. A: Math. Gen. 39 (2006) 5287
-
(2006)
J. Phys. A: Math. Gen.
, vol.39
, pp. 5287
-
-
Bridges, T.J.1
Reich, S.2
-
12
-
-
0036532037
-
Symplectic and multisymplectic methods for the nonlinear Schrödinger equation
-
Chen J.B., Qin M.Z., and Tang Y.F. Symplectic and multisymplectic methods for the nonlinear Schrödinger equation. Comput. Math. Appl. 43 (2002) 1095
-
(2002)
Comput. Math. Appl.
, vol.43
, pp. 1095
-
-
Chen, J.B.1
Qin, M.Z.2
Tang, Y.F.3
-
14
-
-
0035841060
-
Geometric integrators for the nonlinear Schrödinger equation
-
Islas A.L., Karpeev D.A., and Schober C.M. Geometric integrators for the nonlinear Schrödinger equation. Comput. Phys. 173 (2001) 116
-
(2001)
Comput. Phys.
, vol.173
, pp. 116
-
-
Islas, A.L.1
Karpeev, D.A.2
Schober, C.M.3
-
15
-
-
3242702916
-
On the preservation of phase structure under multisymplectic discretization
-
Islas A.L., and Schober C.M. On the preservation of phase structure under multisymplectic discretization. J. Comput. Phys. 197 (2004) 585
-
(2004)
J. Comput. Phys.
, vol.197
, pp. 585
-
-
Islas, A.L.1
Schober, C.M.2
-
19
-
-
0029184510
-
A new operator splitting method for the numerical solution of partial differential equations
-
Rouhi A., and Wright J. A new operator splitting method for the numerical solution of partial differential equations. Comput. Phys. Comm. 85 (1995) 18
-
(1995)
Comput. Phys. Comm.
, vol.85
, pp. 18
-
-
Rouhi, A.1
Wright, J.2
-
20
-
-
10644227675
-
Higher-order split-step Fourier schemes for the generalized nonlinear Schrödinger equation
-
Muslu G.M., and Erbay H.A. Higher-order split-step Fourier schemes for the generalized nonlinear Schrödinger equation. Math. Comput. Simulation 67 (2005) 581
-
(2005)
Math. Comput. Simulation
, vol.67
, pp. 581
-
-
Muslu, G.M.1
Erbay, H.A.2
-
21
-
-
0037832748
-
Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity
-
Bridges T.J., and Reich S. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity. Phys. Lett. A 284 (2001) 184
-
(2001)
Phys. Lett. A
, vol.284
, pp. 184
-
-
Bridges, T.J.1
Reich, S.2
-
22
-
-
0041083030
-
Multisymplectic relative equilibria, multiphase wavetrains, and coupled NLS equations
-
Bridges T.J., and Laine-Pearson T.J. Multisymplectic relative equilibria, multiphase wavetrains, and coupled NLS equations. Stud. Appl. Math. 107 (2001) 137
-
(2001)
Stud. Appl. Math.
, vol.107
, pp. 137
-
-
Bridges, T.J.1
Laine-Pearson, T.J.2
-
23
-
-
1042304391
-
Multisymplectic box schemes and the Korteweg de Vries equation
-
Ascher U., and McLachlan R. Multisymplectic box schemes and the Korteweg de Vries equation. Appl. Numer. Math. 48 (2004) 255
-
(2004)
Appl. Numer. Math.
, vol.48
, pp. 255
-
-
Ascher, U.1
McLachlan, R.2
-
24
-
-
0034640067
-
Multisymplectic geometry and multisymplectic Preissman scheme for the KdV equation
-
Zhao P.F., and Qin M.Z. Multisymplectic geometry and multisymplectic Preissman scheme for the KdV equation. J. Phys. A: Math. General 33 (2000) 3613
-
(2000)
J. Phys. A: Math. General
, vol.33
, pp. 3613
-
-
Zhao, P.F.1
Qin, M.Z.2
-
25
-
-
0037195882
-
Multisymplectic schemes for the nonlinear Klein-Gordon equation
-
Wang Y.S., and Qin M.Z. Multisymplectic schemes for the nonlinear Klein-Gordon equation. Math. Comp. Modeling 36 (2002) 963
-
(2002)
Math. Comp. Modeling
, vol.36
, pp. 963
-
-
Wang, Y.S.1
Qin, M.Z.2
-
26
-
-
0036644593
-
A multisymplectic variational integrator for the nonlinear Schrödinger equation
-
Chen J.B., and Qin M.Z. A multisymplectic variational integrator for the nonlinear Schrödinger equation. Numer. Methods Partial Differential Equations 18 (2002) 523
-
(2002)
Numer. Methods Partial Differential Equations
, vol.18
, pp. 523
-
-
Chen, J.B.1
Qin, M.Z.2
-
27
-
-
19044372348
-
Backward error analysis for multisymplectic discretizations of Hamiltonian PDEs
-
Islas A.L., and Schober C.M. Backward error analysis for multisymplectic discretizations of Hamiltonian PDEs. Math. Comput. Simulation 69 (2005) 290
-
(2005)
Math. Comput. Simulation
, vol.69
, pp. 290
-
-
Islas, A.L.1
Schober, C.M.2
-
28
-
-
0242339583
-
Backward error analysis for multi-symplectic integration methods
-
Moore B., and Reich S. Backward error analysis for multi-symplectic integration methods. Numer. Math. 95 (2003) 625
-
(2003)
Numer. Math.
, vol.95
, pp. 625
-
-
Moore, B.1
Reich, S.2
-
29
-
-
0035921958
-
Nonlinear physics-déjà vu in optics
-
Akhmediev N.N. Nonlinear physics-déjà vu in optics. Nature 413 (2001) 267
-
(2001)
Nature
, vol.413
, pp. 267
-
-
Akhmediev, N.N.1
-
30
-
-
0001193685
-
α δ G / δ u that inherit energy conservation or dissipation property
-
α δ G / δ u that inherit energy conservation or dissipation property. J. Comput. Phys. 156 (1999) 181
-
(1999)
J. Comput. Phys.
, vol.156
, pp. 181
-
-
Furihata, D.1
-
31
-
-
0034920816
-
Numerical simulation of coupled nonlinear Schrödinger equation
-
Ismail M.S., and Taha T.R. Numerical simulation of coupled nonlinear Schrödinger equation. Math. Comput. Simulation 56 (2001) 547
-
(2001)
Math. Comput. Simulation
, vol.56
, pp. 547
-
-
Ismail, M.S.1
Taha, T.R.2
-
32
-
-
0034687898
-
Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations
-
Reich S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations. Comput. Phys. 157 (2000) 473
-
(2000)
Comput. Phys.
, vol.157
, pp. 473
-
-
Reich, S.1
|