메뉴 건너뛰기




Volumn 177, Issue 7, 2007, Pages 566-583

Symplectic and multi-symplectic methods for coupled nonlinear Schrödinger equations with periodic solutions

Author keywords

Coupled nonlinear Schr dinger equation; Periodic waves; Splitting; Symplectic and multi symplectic methods

Indexed keywords

ENERGY CONSERVATION; ERRORS; MOMENTUM; SCHRODINGER EQUATION;

EID: 34548321103     PISSN: 00104655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cpc.2007.05.010     Document Type: Article
Times cited : (44)

References (32)
  • 1
    • 0000763166 scopus 로고
    • On the theory of two-dimensional stationary self-focusing of electromagnetic waves
    • Manakov S.V. On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov. Phys. JETP 38 (1974) 248
    • (1974) Sov. Phys. JETP , vol.38 , pp. 248
    • Manakov, S.V.1
  • 2
    • 84919457647 scopus 로고
    • Stability of solitons in birefringent optical fibers
    • Menyuk C.R. Stability of solitons in birefringent optical fibers. J. Opt. Soc. Amer. B 5 (1988) 392
    • (1988) J. Opt. Soc. Amer. B , vol.5 , pp. 392
    • Menyuk, C.R.1
  • 3
    • 0030455121 scopus 로고    scopus 로고
    • Collision interactions of envelope Rossby solitons in a barometric atmosphere
    • Tan B. Collision interactions of envelope Rossby solitons in a barometric atmosphere. J. Atmos. Sci. 53 (1996) 1604
    • (1996) J. Atmos. Sci. , vol.53 , pp. 1604
    • Tan, B.1
  • 4
    • 0029412913 scopus 로고
    • Collision interactions of solitons in a barometric atmosphere
    • Tan B., and Liu S. Collision interactions of solitons in a barometric atmosphere. J. Atmos. Sci. 52 (1995) 1501
    • (1995) J. Atmos. Sci. , vol.52 , pp. 1501
    • Tan, B.1    Liu, S.2
  • 5
    • 0035148686 scopus 로고    scopus 로고
    • Stability and long time evolution the periodic solutions of the two coupled nonlinear Schrödinger equations
    • Tan B., and Boyd J.P. Stability and long time evolution the periodic solutions of the two coupled nonlinear Schrödinger equations. Chaos Solitons Fractals 12 (2001) 721
    • (2001) Chaos Solitons Fractals , vol.12 , pp. 721
    • Tan, B.1    Boyd, J.P.2
  • 6
    • 3142686141 scopus 로고    scopus 로고
    • The evolution of periodic waves of the coupled nonlinear Schrödinger equations
    • Tsang S.C., and Chow K.W. The evolution of periodic waves of the coupled nonlinear Schrödinger equations. Math. Comput. Simulation 66 (2004) 551
    • (2004) Math. Comput. Simulation , vol.66 , pp. 551
    • Tsang, S.C.1    Chow, K.W.2
  • 7
    • 0000981501 scopus 로고
    • To the integrability of the system of two coupled nonlinear Schrödinger equations
    • Zakharov V.E., and Schulman E.L. To the integrability of the system of two coupled nonlinear Schrödinger equations. Physica D 4 (1982) 270
    • (1982) Physica D , vol.4 , pp. 270
    • Zakharov, V.E.1    Schulman, E.L.2
  • 8
    • 4344660059 scopus 로고    scopus 로고
    • Numerical study of the soliton waves of the coupled nonlinear Schrödinger system
    • Sun J.Q., Gu X.Y., and Ma Z.Q. Numerical study of the soliton waves of the coupled nonlinear Schrödinger system. Physica D 196 (2004) 311
    • (2004) Physica D , vol.196 , pp. 311
    • Sun, J.Q.1    Gu, X.Y.2    Ma, Z.Q.3
  • 9
    • 0142216144 scopus 로고    scopus 로고
    • Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system
    • Sun J.Q., and Qin M.Z. Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system. Comput. Phys. Comm. 155 (2003) 221
    • (2003) Comput. Phys. Comm. , vol.155 , pp. 221
    • Sun, J.Q.1    Qin, M.Z.2
  • 10
    • 33645522650 scopus 로고    scopus 로고
    • Conserved quantities of some Hamiltonian wave equations after full discretization
    • Cano B. Conserved quantities of some Hamiltonian wave equations after full discretization. Numer. Math. 103 (2006) 197
    • (2006) Numer. Math. , vol.103 , pp. 197
    • Cano, B.1
  • 11
    • 33646271105 scopus 로고    scopus 로고
    • Numerical methods for Hamiltonian PDEs
    • Bridges T.J., and Reich S. Numerical methods for Hamiltonian PDEs. J. Phys. A: Math. Gen. 39 (2006) 5287
    • (2006) J. Phys. A: Math. Gen. , vol.39 , pp. 5287
    • Bridges, T.J.1    Reich, S.2
  • 12
    • 0036532037 scopus 로고    scopus 로고
    • Symplectic and multisymplectic methods for the nonlinear Schrödinger equation
    • Chen J.B., Qin M.Z., and Tang Y.F. Symplectic and multisymplectic methods for the nonlinear Schrödinger equation. Comput. Math. Appl. 43 (2002) 1095
    • (2002) Comput. Math. Appl. , vol.43 , pp. 1095
    • Chen, J.B.1    Qin, M.Z.2    Tang, Y.F.3
  • 14
    • 0035841060 scopus 로고    scopus 로고
    • Geometric integrators for the nonlinear Schrödinger equation
    • Islas A.L., Karpeev D.A., and Schober C.M. Geometric integrators for the nonlinear Schrödinger equation. Comput. Phys. 173 (2001) 116
    • (2001) Comput. Phys. , vol.173 , pp. 116
    • Islas, A.L.1    Karpeev, D.A.2    Schober, C.M.3
  • 15
    • 3242702916 scopus 로고    scopus 로고
    • On the preservation of phase structure under multisymplectic discretization
    • Islas A.L., and Schober C.M. On the preservation of phase structure under multisymplectic discretization. J. Comput. Phys. 197 (2004) 585
    • (2004) J. Comput. Phys. , vol.197 , pp. 585
    • Islas, A.L.1    Schober, C.M.2
  • 19
    • 0029184510 scopus 로고
    • A new operator splitting method for the numerical solution of partial differential equations
    • Rouhi A., and Wright J. A new operator splitting method for the numerical solution of partial differential equations. Comput. Phys. Comm. 85 (1995) 18
    • (1995) Comput. Phys. Comm. , vol.85 , pp. 18
    • Rouhi, A.1    Wright, J.2
  • 20
    • 10644227675 scopus 로고    scopus 로고
    • Higher-order split-step Fourier schemes for the generalized nonlinear Schrödinger equation
    • Muslu G.M., and Erbay H.A. Higher-order split-step Fourier schemes for the generalized nonlinear Schrödinger equation. Math. Comput. Simulation 67 (2005) 581
    • (2005) Math. Comput. Simulation , vol.67 , pp. 581
    • Muslu, G.M.1    Erbay, H.A.2
  • 21
    • 0037832748 scopus 로고    scopus 로고
    • Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity
    • Bridges T.J., and Reich S. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity. Phys. Lett. A 284 (2001) 184
    • (2001) Phys. Lett. A , vol.284 , pp. 184
    • Bridges, T.J.1    Reich, S.2
  • 22
    • 0041083030 scopus 로고    scopus 로고
    • Multisymplectic relative equilibria, multiphase wavetrains, and coupled NLS equations
    • Bridges T.J., and Laine-Pearson T.J. Multisymplectic relative equilibria, multiphase wavetrains, and coupled NLS equations. Stud. Appl. Math. 107 (2001) 137
    • (2001) Stud. Appl. Math. , vol.107 , pp. 137
    • Bridges, T.J.1    Laine-Pearson, T.J.2
  • 23
    • 1042304391 scopus 로고    scopus 로고
    • Multisymplectic box schemes and the Korteweg de Vries equation
    • Ascher U., and McLachlan R. Multisymplectic box schemes and the Korteweg de Vries equation. Appl. Numer. Math. 48 (2004) 255
    • (2004) Appl. Numer. Math. , vol.48 , pp. 255
    • Ascher, U.1    McLachlan, R.2
  • 24
    • 0034640067 scopus 로고    scopus 로고
    • Multisymplectic geometry and multisymplectic Preissman scheme for the KdV equation
    • Zhao P.F., and Qin M.Z. Multisymplectic geometry and multisymplectic Preissman scheme for the KdV equation. J. Phys. A: Math. General 33 (2000) 3613
    • (2000) J. Phys. A: Math. General , vol.33 , pp. 3613
    • Zhao, P.F.1    Qin, M.Z.2
  • 25
    • 0037195882 scopus 로고    scopus 로고
    • Multisymplectic schemes for the nonlinear Klein-Gordon equation
    • Wang Y.S., and Qin M.Z. Multisymplectic schemes for the nonlinear Klein-Gordon equation. Math. Comp. Modeling 36 (2002) 963
    • (2002) Math. Comp. Modeling , vol.36 , pp. 963
    • Wang, Y.S.1    Qin, M.Z.2
  • 26
    • 0036644593 scopus 로고    scopus 로고
    • A multisymplectic variational integrator for the nonlinear Schrödinger equation
    • Chen J.B., and Qin M.Z. A multisymplectic variational integrator for the nonlinear Schrödinger equation. Numer. Methods Partial Differential Equations 18 (2002) 523
    • (2002) Numer. Methods Partial Differential Equations , vol.18 , pp. 523
    • Chen, J.B.1    Qin, M.Z.2
  • 27
    • 19044372348 scopus 로고    scopus 로고
    • Backward error analysis for multisymplectic discretizations of Hamiltonian PDEs
    • Islas A.L., and Schober C.M. Backward error analysis for multisymplectic discretizations of Hamiltonian PDEs. Math. Comput. Simulation 69 (2005) 290
    • (2005) Math. Comput. Simulation , vol.69 , pp. 290
    • Islas, A.L.1    Schober, C.M.2
  • 28
    • 0242339583 scopus 로고    scopus 로고
    • Backward error analysis for multi-symplectic integration methods
    • Moore B., and Reich S. Backward error analysis for multi-symplectic integration methods. Numer. Math. 95 (2003) 625
    • (2003) Numer. Math. , vol.95 , pp. 625
    • Moore, B.1    Reich, S.2
  • 29
    • 0035921958 scopus 로고    scopus 로고
    • Nonlinear physics-déjà vu in optics
    • Akhmediev N.N. Nonlinear physics-déjà vu in optics. Nature 413 (2001) 267
    • (2001) Nature , vol.413 , pp. 267
    • Akhmediev, N.N.1
  • 30
    • 0001193685 scopus 로고    scopus 로고
    • α δ G / δ u that inherit energy conservation or dissipation property
    • α δ G / δ u that inherit energy conservation or dissipation property. J. Comput. Phys. 156 (1999) 181
    • (1999) J. Comput. Phys. , vol.156 , pp. 181
    • Furihata, D.1
  • 31
    • 0034920816 scopus 로고    scopus 로고
    • Numerical simulation of coupled nonlinear Schrödinger equation
    • Ismail M.S., and Taha T.R. Numerical simulation of coupled nonlinear Schrödinger equation. Math. Comput. Simulation 56 (2001) 547
    • (2001) Math. Comput. Simulation , vol.56 , pp. 547
    • Ismail, M.S.1    Taha, T.R.2
  • 32
    • 0034687898 scopus 로고    scopus 로고
    • Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations
    • Reich S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations. Comput. Phys. 157 (2000) 473
    • (2000) Comput. Phys. , vol.157 , pp. 473
    • Reich, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.