-
2
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121-167, 1998. (Pubitemid 128695475)
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
4
-
-
51749099801
-
A naïve support vector regression benchmark for the nn3 forecasting competition
-
S. F. Crone and S. Pietsch. A naïve support vector regression benchmark for the nn3 forecasting competition. In IJCNN, pages 2454-2459, 2007.
-
(2007)
IJCNN
, pp. 2454-2459
-
-
Crone, S.F.1
Pietsch, S.2
-
5
-
-
67049084895
-
A kernel for time series based on global alignments
-
informal publication
-
M. Cuturi, J.-P. Vert, O. Birkenes, and T. Matsui. A kernel for time series based on global alignments. CoRR, abs/cs/0610033, 2006. informal publication.
-
(2006)
CoRR, abs/cs/0610033
-
-
Cuturi, M.1
Vert, J.-P.2
Birkenes, O.3
Matsui, T.4
-
6
-
-
0037507242
-
Pruning error minimization in least squares support vector machines
-
B. J. de Kruif and T. de Vries. Pruning error minimization in least squares support vector machines. IEEE Transactions on Neural Networks, 14(3):696-702, 2003.
-
(2003)
IEEE Transactions on Neural Networks
, vol.14
, Issue.3
, pp. 696-702
-
-
De Kruif, B.J.1
De Vries, T.2
-
9
-
-
67049127600
-
-
T. V. Gestel, J. Suykens, D. Baestaens, A. Lambrechts, G. Lanckriet, B. Vandaele, B. D. Moor, and J. Vandewalle. Financial time series prediction using least squares support vector machines within the evidence framework, 2001.
-
(2001)
Financial Time Series Prediction Using Least Squares Support Vector Machines within the Evidence Framework
-
-
Gestel, T.V.1
Suykens, J.2
Baestaens, D.3
Lambrechts, A.4
Lanckriet, G.5
Vandaele, B.6
Moor, B.D.7
Vandewalle, J.8
-
10
-
-
26444479778
-
Optimization by simulated annealing
-
13 May 220
-
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, Number 4598, 13 May 1983, 220, 4598:671-680, 1983.
-
(1983)
Science
, Issue.4598
, pp. 671-680
-
-
Kirkpatrick, S.1
Gelatt, C.D.2
Vecchi, M.P.3
-
11
-
-
5144219995
-
Evolving rbf neural networks for timeseries forecasting with evrbf.
-
V. M. Rivas, J. J. Merelo, P. A. Castillo, M. G. Arenas, and J. G. Castellano. Evolving rbf neural networks for timeseries forecasting with evrbf. Inf. Sci. Inf. Comput. Sci., 165(3-4):207-220, 2004.
-
(2004)
Inf. Sci. Inf. Comput. Sci.
, vol.165
, Issue.3-4
, pp. 207-220
-
-
Rivas, V.M.1
Merelo, J.J.2
Castillo, P.A.3
Arenas, M.G.4
Castellano, J.G.5
-
12
-
-
38049108050
-
Kernel methods applied to time series forecasting
-
In F. Sandoval, A. Prieto, J. Cabestany, and M. G. a, editors, Springer
-
G. Rubio, H. Pomares, L. J. Herrera, and I. Rojas. Kernel methods applied to time series forecasting. In F. Sandoval, A. Prieto, J. Cabestany, and M. G. a, editors, IWANN, volume 4507 of Lecture Notes in Computer Science, pages 782-789. Springer, 2007.
-
(2007)
IWANN, volume 4507 of Lecture Notes in Computer Science
, pp. 782-789
-
-
Rubio, G.1
Pomares, H.2
Herrera, L.J.3
Rojas, I.4
-
13
-
-
34249654189
-
CATS benchmark time series prediction by Kalman smoother with cross-validated noise density
-
DOI 10.1016/j.neucom.2005.12.132, PII S0925231207000379, Selected papers from the 3rd International Conference on Development and Learning (ICDL 2004)
-
S. S̈rkk̈, A. Vehtari, and J. Lampinen. Cats benchmark time series prediction by kalman smoother with crossvalidated noise density. Neurocomputing, 70(13-15):2331-2341, 2007. (Pubitemid 46825382)
-
(2007)
Neurocomputing
, vol.70
, Issue.13-15
, pp. 2331-2341
-
-
Sarkka, S.1
Vehtari, A.2
Lampinen, J.3
-
14
-
-
0032638628
-
Least squares support vector machine classifiers
-
J. A. K. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural Processing Letters, 9(3):293-300, 1999.
-
(1999)
Neural Processing Letters
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
|