메뉴 건너뛰기




Volumn , Issue , 2008, Pages 965-970

Variance minimization least squares support vector machines for time series analysis

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL TIME; DATA SETS; LEAST SQUARES SUPPORT VECTOR MACHINES; MACHINE LEARNING METHODS; OBJECTIVE FUNCTIONS; SVM ALGORITHM; TIME SERIES FORECASTING; TIME SERIES PREDICTION; VARIANCE MINIMIZATION;

EID: 67049169341     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2008.79     Document Type: Conference Paper
Times cited : (3)

References (15)
  • 2
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121-167, 1998. (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 4
    • 51749099801 scopus 로고    scopus 로고
    • A naïve support vector regression benchmark for the nn3 forecasting competition
    • S. F. Crone and S. Pietsch. A naïve support vector regression benchmark for the nn3 forecasting competition. In IJCNN, pages 2454-2459, 2007.
    • (2007) IJCNN , pp. 2454-2459
    • Crone, S.F.1    Pietsch, S.2
  • 6
    • 0037507242 scopus 로고    scopus 로고
    • Pruning error minimization in least squares support vector machines
    • B. J. de Kruif and T. de Vries. Pruning error minimization in least squares support vector machines. IEEE Transactions on Neural Networks, 14(3):696-702, 2003.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.3 , pp. 696-702
    • De Kruif, B.J.1    De Vries, T.2
  • 10
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • 13 May 220
    • S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, Number 4598, 13 May 1983, 220, 4598:671-680, 1983.
    • (1983) Science , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 12
    • 38049108050 scopus 로고    scopus 로고
    • Kernel methods applied to time series forecasting
    • In F. Sandoval, A. Prieto, J. Cabestany, and M. G. a, editors, Springer
    • G. Rubio, H. Pomares, L. J. Herrera, and I. Rojas. Kernel methods applied to time series forecasting. In F. Sandoval, A. Prieto, J. Cabestany, and M. G. a, editors, IWANN, volume 4507 of Lecture Notes in Computer Science, pages 782-789. Springer, 2007.
    • (2007) IWANN, volume 4507 of Lecture Notes in Computer Science , pp. 782-789
    • Rubio, G.1    Pomares, H.2    Herrera, L.J.3    Rojas, I.4
  • 13
    • 34249654189 scopus 로고    scopus 로고
    • CATS benchmark time series prediction by Kalman smoother with cross-validated noise density
    • DOI 10.1016/j.neucom.2005.12.132, PII S0925231207000379, Selected papers from the 3rd International Conference on Development and Learning (ICDL 2004)
    • S. S̈rkk̈, A. Vehtari, and J. Lampinen. Cats benchmark time series prediction by kalman smoother with crossvalidated noise density. Neurocomputing, 70(13-15):2331-2341, 2007. (Pubitemid 46825382)
    • (2007) Neurocomputing , vol.70 , Issue.13-15 , pp. 2331-2341
    • Sarkka, S.1    Vehtari, A.2    Lampinen, J.3
  • 14
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • J. A. K. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural Processing Letters, 9(3):293-300, 1999.
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.