-
2
-
-
0003319647
-
Introduction to Gaussian processes
-
Bishop, C.M, ed, Neural Networks and Machine Learning, Kluwer Academic Publishers, Dordrecht
-
MacKay, D.J.C.: Introduction to Gaussian processes. In: Bishop, C.M. (ed.) Neural Networks and Machine Learning, NATO ASI Series, pp. 133-166. Kluwer Academic Publishers, Dordrecht (1998)
-
(1998)
NATO ASI Series
, pp. 133-166
-
-
MacKay, D.J.C.1
-
3
-
-
0002295913
-
Gaussian processes for regression
-
Touretzky, D.S, Mozer, M.C, Hasselmo, M.E, eds, MIT Press, Cambridge
-
Williams, C.K.I., Rasmussen, C.E.: Gaussian processes for regression. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Proceedings of Conference Advances in Neural Information Processing Systems. NIPS, vol. 8, MIT Press, Cambridge (1996)
-
(1996)
Proceedings of Conference Advances in Neural Information Processing Systems. NIPS
, vol.8
-
-
Williams, C.K.I.1
Rasmussen, C.E.2
-
4
-
-
0037695279
-
-
World Scientific Publishing, Singapore
-
Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.: Least Squares Support Vector Machines. World Scientific Publishing, Singapore (2002)
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
5
-
-
0003301456
-
Bayesian learning for neural networks
-
Springer, Berlin, Heidelberg, New York
-
Neal, R.M.: Bayesian learning for neural networks. Lecture Notes in Statistics, vol. 118. Springer, Berlin, Heidelberg, New York (1996)
-
(1996)
Lecture Notes in Statistics
, vol.118
-
-
Neal, R.M.1
-
6
-
-
8344270238
-
Gaussian process for nonstationary time series prediction
-
Elsevier Science BV, Amsterdam
-
Brahim-Belhouari, S., Bermak, A.: Gaussian process for nonstationary time series prediction. In: Computational Statistics and Data Analysis, vol. 4, pp. 705-712. Elsevier Science BV, Amsterdam (2004)
-
(2004)
Computational Statistics and Data Analysis
, vol.4
, pp. 705-712
-
-
Brahim-Belhouari, S.1
Bermak, A.2
-
8
-
-
25144480349
-
-
Ji, Y., Hao, J., Reyhani, N., Lendasse, A.: Direct and Recursive Prediction of Time Series Using Mutual Information Selection. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, 3512, Springer, Berlin, Heidelberg, New York, 10101017 (2005)
-
Ji, Y., Hao, J., Reyhani, N., Lendasse, A.: Direct and Recursive Prediction of Time Series Using Mutual Information Selection. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, Springer, Berlin, Heidelberg, New York, 10101017 (2005)
-
-
-
-
9
-
-
38049117513
-
A Novel Approach to ARMA Time Series Model Identication by Neural Networks
-
World Scientific and Engineering Academy and Society
-
Valenzuela, O., Rojas, L., Marquez, L., Pasadas, M.: A Novel Approach to ARMA Time Series Model Identication by Neural Networks. WSEAS Transactions on Circuits and Systems, vol 3(2), pp. 342-347, World Scientific and Engineering Academy and Society (2004)
-
(2004)
WSEAS Transactions on Circuits and Systems
, vol.3
, Issue.2
, pp. 342-347
-
-
Valenzuela, O.1
Rojas, L.2
Marquez, L.3
Pasadas, M.4
-
10
-
-
0036131610
-
-
Elsevier Science BV, Amsterdam
-
Rojas, I., Pomares, H., Bernier, J.L., Ortega, J., del Pino, B., Pelayo, F., Prieto, A.: Time series analysis using normalized PG-RBF network with regression weights. Neurocomputing, vol. 42, pp. 267-285, Elsevier Science BV, Amsterdam (2002)
-
(2002)
Time series analysis using normalized PG-RBF network with regression weights. Neurocomputing
, vol.42
, pp. 267-285
-
-
Rojas, I.1
Pomares, H.2
Bernier, J.L.3
Ortega, J.4
del Pino, B.5
Pelayo, F.6
Prieto, A.7
-
11
-
-
9444239783
-
-
Springer, Berlin, Heidelberg, New York
-
Rojas, I., Rojas, F., Pomares, H., Gonzlez, J., Herrera, L.J., Valenzuela, O.: The synergy between classical and soft-computing techniques for Time Series Prediction. LNCS, vol. 2972, pp. 30-39. Springer, Berlin, Heidelberg, New York (2004)
-
(2004)
The synergy between classical and soft-computing techniques for Time Series Prediction. LNCS
, vol.2972
, pp. 30-39
-
-
Rojas, I.1
Rojas, F.2
Pomares, H.3
Gonzlez, J.4
Herrera, L.J.5
Valenzuela, O.6
-
12
-
-
0003798627
-
-
MIT press, Cambridge
-
Müller, K.-R., Smola, A.J., Rätsch, S.B., Kohlmorgen, J., Vapnik, V.: Using support vector machines for time series prediction in Advances in kernel methods: Support Vector learning. MIT press, Cambridge (1999)
-
(1999)
Using support vector machines for time series prediction in Advances in kernel methods: Support Vector learning
-
-
Müller, K.-R.1
Smola, A.J.2
Rätsch, S.B.3
Kohlmorgen, J.4
Vapnik, V.5
-
13
-
-
0025108740
-
Weighted k-nearest neighbor method for the calculation of missing values
-
Elsevier Science BV, Amsterdam
-
Todeschini, R.: Weighted k-nearest neighbor method for the calculation of missing values. In: Chemometrics and Intelligent Laboratory Systems, vol. 9 (2), pp. 201-205. Elsevier Science BV, Amsterdam (1990)
-
(1990)
Chemometrics and Intelligent Laboratory Systems
, vol.9
, Issue.2
, pp. 201-205
-
-
Todeschini, R.1
|