메뉴 건너뛰기




Volumn 7260, Issue , 2009, Pages

Interactive segmentation in multimodal medical imagery using a bayesian transductive learning approach

Author keywords

Brain; Classifier design; Machine learning; Observer studies; Segmentation

Indexed keywords

BAYES ALGORITHMS; BAYES MODELS; BAYESIAN; BRAIN IMAGERY; CLASS LABELS; CLASSIFIER DESIGN; CONDITIONAL DISTRIBUTION; CONDITIONAL INDEPENDENCE ASSUMPTION; CONDITIONAL INDEPENDENCES; COVARIATE; FEATURE DIMENSIONS; FEATURE SPACE; INTERACTIVE SEGMENTATION; LABEL INFORMATION; LABELED DATA; LABELED TRAINING DATA; MACHINE LEARNING; MEDICAL DOMAINS; MEDICAL IMAGERY; MULTI-MODAL; MULTIMODAL MEDICAL IMAGES; NOVEL ALGORITHM; OBSERVER STUDIES; PARAMETER SPACES; SEGMENTATION; SEGMENTATION PERFORMANCE; SEMI-SUPERVISED LEARNING; SENSITIVITY AND SPECIFICITY; SPATIAL CLASSIFICATION; TEST SETS; TRANSDUCTIVE LEARNING;

EID: 66749160345     PISSN: 16057422     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.811675     Document Type: Conference Paper
Times cited : (9)

References (32)
  • 1
    • 0038737538 scopus 로고    scopus 로고
    • A naïve bayes classifier using transductive inference for text classification
    • Branson K., "A Naïve Bayes Classifier Using Transductive Inference for Text Classification", Technical Report, (2001).
    • (2001) Technical Report
    • Branson, K.1
  • 2
    • 0000482137 scopus 로고    scopus 로고
    • On the Relationship between Generalization Error, Hypothesis Complexity, and Sample Complexity for Radial Basis Functions
    • Niyogi P., Girosi F., "On the relationship between generalization error, hypothesis complexity and sample complexity for radial basis functions", Neural Computation, 8(4), pp. 819-842 (1996). (Pubitemid 126449947)
    • (1996) Neural Computation , vol.8 , Issue.4 , pp. 819-842
    • Niyogi, P.1    Girosi, F.2
  • 8
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • University of Wisconsin Madison
    • Zhu X., "Semi-Supervised Learning Literature Survey", Computer Sciences Technical Report 1530, University of Wisconsin Madison, (2007).
    • (2007) Computer Sciences Technical Report 1530
    • Zhu, X.1
  • 12
    • 0010805362 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using graph mincuts
    • Blum A., Chawla S., "Learning from Labeled and Unlabeled Data using Graph Mincuts", ICML, pp. 19-25 (2001).
    • (2001) ICML , pp. 19-25
    • Blum, A.1    Chawla, S.2
  • 13
    • 0042878370 scopus 로고    scopus 로고
    • Partially labeled classification with markov random walks
    • Szummer M. and Jaakkola T., "Partially Labeled Classification with Markov Random Walks", NIPS, pp. 945-952 (2001).
    • (2001) NIPS , pp. 945-952
    • Szummer, M.1    Jaakkola, T.2
  • 16
    • 35148828527 scopus 로고    scopus 로고
    • Generative graphical models for maneuvering object tracking and dynamics analysis
    • Fan X., Fan G., "Generative Graphical Models for Maneuvering Object Tracking and Dynamics Analysis", Computer Visoin and Pattern Recognition (CVPR), pp. 1-8 (2007).
    • (2007) Computer Visoin and Pattern Recognition (CVPR) , pp. 1-8
    • Fan, X.1    Fan, G.2
  • 17
    • 0004047518 scopus 로고    scopus 로고
    • Oxford University Press, ISBN 0198522193
    • Lauritzen S., [Graphical Models], Oxford University Press, ISBN 0198522193, (1996).
    • (1996) Graphical Models
    • Lauritzen, S.1
  • 20
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • Nigam K., McCallum A., Thrun S., and Mitchell T., "Text Classification from Labeled and Unlabeled Documents using EM", Machine Learning, vol.39, pp. 103-134 (2000). (Pubitemid 30594822)
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 103-134
    • Nigam, K.1    Mccallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 21
    • 14344253305 scopus 로고    scopus 로고
    • Bayesian inference for transductive learning of kernel matrix using the tanner-wong data augmentation algorithm
    • Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
    • Zhang Z. et al., "Bayesian Inference for Transductive Learning of Kernel Matrix Using the Tanner-Wong Data Augmentation Algorithm", In Proceedings of the 21st International Conference on Machine Learning, pp.935-942 (2004). (Pubitemid 40290900)
    • (2004) Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004 , pp. 935-942
    • Zhang, Z.1    Yeung, D.-Y.2    Kwok, J.T.3
  • 24
    • 0004007675 scopus 로고    scopus 로고
    • Assessing the calibration of Naïve Bayes posterior estimates
    • Bennett P.N., "Assessing the calibration of Naïve Bayes posterior estimates", In Technical Report No. CMUCS00-15, (2000).
    • (2000) In Technical Report No. CMUCS00-15
    • Bennett, P.N.1
  • 25
    • 0031269184 scopus 로고    scopus 로고
    • On the Optimality of the Simple Bayesian Classifier under Zero-One Loss
    • Domingos P. and Pazzani M., "Beyond independence: Conditions for the optimality of the simple Bayesian classifier", Machine Learning, vol.29, pp. 103-130 (1997). (Pubitemid 127510035)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 26
    • 0035528674 scopus 로고    scopus 로고
    • Idiot's Bayes - Not so stupid after all?
    • Hand D. J. and Yu Y., "Idiots Bayes - not so stupid after all?", International Statistical Review, vol.69, pp. 385-389 (2001). (Pubitemid 33392115)
    • (2001) International Statistical Review , vol.69 , Issue.3 , pp. 385-398
    • Hand, D.J.1    Yu, K.2
  • 30
    • 66749107921 scopus 로고    scopus 로고
    • INRIA
    • INRIA, "MedINRIA", http://www-sop.inria.fr/asclepios/software/ MedINRIA/, (2008).
    • (2008) MedINRIA


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.