-
1
-
-
85010244173
-
-
10.1070/PU1968v010n04ABEH003699
-
V. Veselago, Sov. Phys. Usp. 10, 509 (1968). 10.1070/ PU1968v010n04ABEH003699
-
(1968)
Sov. Phys. Usp.
, vol.10
, pp. 509
-
-
Veselago, V.1
-
2
-
-
0346876659
-
-
10.1103/PhysRevLett.84.4184
-
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000). 10.1103/PhysRevLett.84.4184
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 4184
-
-
Smith, D.R.1
Padilla, W.J.2
Vier, D.C.3
Nemat-Nasser, S.C.4
Schultz, S.5
-
4
-
-
52149094974
-
-
10.1038/nature07247
-
J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Nature (London) 455, 376 (2008). 10.1038/nature07247
-
(2008)
Nature (London)
, vol.455
, pp. 376
-
-
Valentine, J.1
Zhang, S.2
Zentgraf, T.3
Ulin-Avila, E.4
Genov, D.A.5
Bartal, G.6
Zhang, X.7
-
5
-
-
0037458417
-
-
10.1103/PhysRevLett.90.077405
-
D. R. Smith and D. Schurig, Phys. Rev. Lett. 90, 077405 (2003). 10.1103/PhysRevLett.90.077405
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 077405
-
-
Smith, D.R.1
Schurig, D.2
-
6
-
-
33747205487
-
-
10.1103/PhysRevLett.97.073901
-
X. Fan, G. P. Wang, Jeffrey Chi Wai Lee, and C. T. Chan, Phys. Rev. Lett. 97, 073901 (2006). 10.1103/PhysRevLett.97.073901
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 073901
-
-
Fan, X.1
Wang, G.P.2
Chi Wai Lee, J.3
Chan, C.T.4
-
7
-
-
36749079969
-
-
10.1038/nmat2033
-
A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, Nature Mater. 6, 946 (2007). 10.1038/nmat2033
-
(2007)
Nature Mater.
, vol.6
, pp. 946
-
-
Hoffman, A.J.1
Alekseyev, L.2
Howard, S.S.3
Franz, K.J.4
Wasserman, D.5
Podolskiy, V.A.6
Narimanov, E.E.7
Sivco, D.L.8
Gmachl, C.9
-
8
-
-
49649096092
-
-
10.1126/science.1157566
-
J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, Science 321, 930 (2008). 10.1126/science.1157566
-
(2008)
Science
, vol.321
, pp. 930
-
-
Yao, J.1
Liu, Z.2
Liu, Y.3
Wang, Y.4
Sun, C.5
Bartal, G.6
Stacy, A.M.7
Zhang, X.8
-
10
-
-
0034666990
-
-
10.1103/PhysRevB.62.10696
-
M. Notomi, Phys. Rev. B 62, 10696 (2000). 10.1103/PhysRevB.62.10696
-
(2000)
Phys. Rev. B
, vol.62
, pp. 10696
-
-
Notomi, M.1
-
11
-
-
0037497320
-
-
10.1038/423604b
-
E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Nature (London) 423, 604 (2003). 10.1038/423604b
-
(2003)
Nature (London)
, vol.423
, pp. 604
-
-
Cubukcu, E.1
Aydin, K.2
Ozbay, E.3
Foteinopoulou, S.4
Soukoulis, C.M.5
-
13
-
-
55149090743
-
-
10.1063/1.3012373
-
M. G. Silveirinha, C. A. Fernandes, J. R. Costa, and C. R. Medeiros, Appl. Phys. Lett. 93, 174103 (2008). 10.1063/1.3012373
-
(2008)
Appl. Phys. Lett.
, vol.93
, pp. 174103
-
-
Silveirinha, M.G.1
Fernandes, C.A.2
Costa, J.R.3
Medeiros, C.R.4
-
16
-
-
42749103308
-
-
10.1103/PhysRevE.70.046616
-
C. R. Simovski and P. A. Belov, Phys. Rev. E 70, 046616 (2004). 10.1103/PhysRevE.70.046616
-
(2004)
Phys. Rev. e
, vol.70
, pp. 046616
-
-
Simovski, C.R.1
Belov, P.A.2
-
18
-
-
66349130272
-
-
For frequencies larger than the plasma frequency, it may be possible that a plane wave propagating in air excites two propagating modes in the metamaterial and thus originates two refracted beams. However in the long wavelength regime considered here, ββp, only a single propagating mode can be excited, and thus there is a single refracted beam.
-
For frequencies larger than the plasma frequency, it may be possible that a plane wave propagating in air excites two propagating modes in the metamaterial and thus originates two refracted beams. However in the long wavelength regime considered here, ββp, only a single propagating mode can be excited, and thus there is a single refracted beam.
-
-
-
-
20
-
-
66349117538
-
-
In nonlocal media the Poynting vector can be explicitly calculated as S= S (0) + S (1), where S (0) = 1 2 Re { E× H} and the "high- frequency" component S (1) is such that Sl (1) =- ω ε0 4 Re { Eε̄ ̄ kl E }, (l=1,2,3) (Refs.). It is demonstrated in Ref. (pp. 65-67) that the Poynting vector is given by the product of the energy density and the group velocity.
-
In nonlocal media the Poynting vector can be explicitly calculated as S= S (0) + S (1), where S (0) = 1 2 Re { E× H} and the "high- frequency" component S (1) is such that Sl (1) =- ω ε0 4 Re { Eε̄ ̄ kl E }, (l=1,2,3) (Refs.). It is demonstrated in Ref. (pp. 65-67) that the Poynting vector is given by the product of the energy density and the group velocity.
-
-
-
|