-
1
-
-
33947292595
-
-
Gerlach, D. H.; Kane, A. R.; Parshall, G. W.; Jesson, J. P.; Muetterties, E. L. J. Am. Chem. Soc. 1971, 93, 3543-3544.
-
(1971)
J. Am. Chem. Soc.
, vol.93
, pp. 3543-3544
-
-
Gerlach, D.H.1
Kane, A.R.2
Parshall G., W.3
Jesson, J.P.4
Muetterties, E.L.5
-
3
-
-
0040273250
-
-
Clark, D. A.; Hunt, M. M.; Kemmitt, R. D. W. J. Organomet. Chem. 1979, 175, 303-313.
-
(1979)
J. Organomet. Chem.
, vol.175
, pp. 303-313
-
-
Clark, D.A.1
Hunt, M.M.2
Kemmitt R. D., W.3
-
5
-
-
0010824431
-
-
Favero, G.; Frigo, A.; Turco, A. Gazz. Chim. Ital. 1974, 104, 869.
-
(1974)
Gazz. Chim. Ital.
, vol.104
, pp. 869
-
-
Favero, G.1
Frigo, A.2
Turco, A.3
-
8
-
-
0000802341
-
-
Favero, G.; Morvillo, A.; Turco, A. J. Organomet. Chem. 1983, 241, 251-257.
-
(1983)
J. Organomet. Chem.
, vol.241
, pp. 251-257
-
-
Favero, G.1
Morvillo, A.2
Turco, A.3
-
9
-
-
29844433116
-
-
Blanchini, C.; Masi, D.; Meli, A.; Sabat, M. Organometallics 1986, 5, 1670-1675.
-
(1986)
Organometallics
, vol.5
, pp. 1670-1675
-
-
Blanchini, C.1
Masi, D.2
Meli, A.3
Sabat, M.4
-
11
-
-
3943089163
-
-
Churchill, D.; Shin, J. H.; Hascall, T.; Hahn, J. M.; Bridgewater, B. M.; Parkin, G. Organometallics 1999, 18, 2403-2406.
-
(1999)
Organometallics
, vol.18
, pp. 2403-2406
-
-
Churchill, D.1
Shin, J.H.2
Hascall, T.3
Hahn, J.M.4
Bridgewater B., M.5
Parkin, G.6
-
13
-
-
0037077582
-
-
Garcia, J. J.; Brunkan, N. M.; Jones, W. D. J. Am. Chem. Soc. 2002, 124, 9547-9555.
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 9547-9555
-
-
Garcia, J.J.1
Brunkan, N.M.2
Jones, W.D.3
-
14
-
-
1642291793
-
-
Brunkan, N. M.; Brestensky, D. M.; Jones, W. D. J. Am. Chem. Soc. 2004, 126, 3627-3641.
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 3627-3641
-
-
Brunkan, N.M.1
Brestensky, D.M.2
Jones, W.D.3
-
15
-
-
4043179055
-
-
Garciia, J. J.; Areivalo, Brunkan, N. M.; Jones, W. D. Organometallics 2004, 23, 3997-4002.
-
(2004)
Organometallics
, vol.23
, pp. 3997-4002
-
-
Garcia, J.J.1
Areivalo Brunkan, N.M.2
Jones, W.D.3
-
16
-
-
34250797915
-
-
Atesm, T. A.; Li, T.; Lachaize, S.; Brennessel, W. W.; Garcia, J. J.; Jones, W. D. J. Am. Chem. Soc. 2007, 129, 7562-7569.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 7562-7569
-
-
Atesin, T.A.1
Li, T.2
Lachaize, S.3
Brennessel, W.W.4
Garcia, J.J.5
Jones, W.D.6
-
17
-
-
50549093469
-
-
Atesin, T. A.; Li, T.; Lachaize, S.; Garcia, J. J.; Jones, W. D. Organometallics 2008, 27, 3811-3817.
-
(2008)
Organometallics
, vol.27
, pp. 3811-3817
-
-
Atesin T., A.1
Li, T.2
Lachaize, S.3
Garcia, J.J.4
Jones, W.D.5
-
18
-
-
34548163625
-
-
Ohnishi, Y.-y.; Nakao, Y.; Sato, H.; Sakaki, S. J. Phys. Chem. A 2007, 111, 7915-7924.
-
(2007)
J. Phys. Chem. A
, vol.111
, pp. 7915-7924
-
-
Ohnishi, Y.-Y.1
Nakao, Y.2
Sato, H.3
Sakaki, S.4
-
19
-
-
0037165751
-
-
Taw, F. L.; White, P. S.; Bergman, R. G.; Brookhart, M. J.Am. Chem. Soc. 2002, 124, 4192.
-
(2002)
J.Am. Chem. Soc.
, vol.124
, pp. 4192
-
-
Taw, F.L.1
White, P.S.2
Bergman R., G.3
Brookhart, M.4
-
20
-
-
0042626231
-
-
Taw, F. L.; Mueller, A. H.; Bergman, R. G.; Brookhart, M. J. Am. Chem. Soc. 2003, 125, 9808.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 9808
-
-
Taw, F.L.1
Mueller, A.H.2
Bergman R., G.3
Brookhart, M.4
-
21
-
-
1642454928
-
-
Nakazawa, H.; Kawasaki, T.; Miyoshi, K.; Suresh, C. H.; Koga, N. Organometallics 2004, 23, 117.
-
(2004)
Organometallics
, vol.23
, pp. 117
-
-
Nakazawa, H.1
Kawasaki, T.2
Miyoshi, K.3
Suresh, C.H.4
Koga, N.5
-
23
-
-
34547175821
-
-
Nakazawa, H.; Itazaki, M.; Kamata, K.; Ueda, K. Chem. Asia J. 2007, 2, 882-888
-
(2007)
Chem. Asia J.
, vol.2
, pp. 882-888
-
-
Nakazawa, H.1
Itazaki, M.2
Kamata, K.3
Ueda, K.4
-
25
-
-
7444242751
-
-
Nakao, Y.; Oda, S.; Hiyama, T. J. Am. Chem. Soc. 2004, 126, 13904.
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 13904
-
-
Nakao, Y.1
Oda, S.2
Hiyama, T.3
-
26
-
-
33745337017
-
-
Nakao, Y.; Oda, S.; Yada, A.; Hiyama, T. Tetrahedron 2006, 62, 7567.
-
(2006)
Tetrahedron
, vol.62
, pp. 7567
-
-
Nakao, Y.1
Oda, S.2
Yada, A.3
Hiyama, T.4
-
29
-
-
65749119640
-
-
We tried to perform the IRC calculation, but it failed in several cases here probably because of too flat of a potential energy surface. We ascertained that each transition state connects reactant and product on the potential energy surface by performing steepest descent geometry optimization starting from each transition state.
-
note We tried to perform the IRC calculation, but it failed in several cases here probably because of too flat of a potential energy surface. We ascertained that each transition state connects reactant and product on the potential energy surface by performing steepest descent geometry optimization starting from each transition state.
-
-
-
-
30
-
-
41549118633
-
-
Ohnishi, Y.-y.; Nakao, Y.; Sato, H.; Sakaki, S. J. Phys. Chem. A 2008, 112, 1946-1955.
-
(2008)
J. Phys. Chem. A
, vol.112
, pp. 1946-1955
-
-
Ohnishi, Y.-Y.1
Nakao, Y.2
Sato, H.3
Sakaki, S.4
-
31
-
-
36549092018
-
-
Dolg, M.; Stoll, W. H.; Preuss, H. J. Chem. Phys. 1987, 86, 866-872.
-
(1987)
J. Chem. Phys.
, vol.86
, pp. 866-872
-
-
Dolg, M.1
Stoll, W.H.2
Preuss, H.3
-
32
-
-
33645949559
-
-
Francl, M. M.; Petro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654-3665.
-
(1982)
J. Chem. Phys.
, vol.77
, pp. 3654-3665
-
-
Francl, M.M.1
Petro, W.J.2
Hehre W., J.3
Binkley, J.S.4
Gordon M., S.5
DeFrees, D.J.6
Pople, J.A.7
-
33
-
-
0347170005
-
-
Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257-2261.
-
(1972)
J. Chem. Phys.
, vol.56
, pp. 2257-2261
-
-
Hehre, W.J.1
Ditchfield, R.2
Pople, J.A.3
-
37
-
-
65749115306
-
-
sol is neither Gibbs free energy nor Helmholtz free energy because it is the PCM-calculated free energy. Apparently, the PCM- calculated free energy is different from neither Gibbs free energy nor Helmholtz free energy, but it is called free energy because it involves the work necessary to build up solute in continuum solvent.
-
sol is neither Gibbs free energy nor Helmholtz free energy because it is the PCM-calculated free energy. Apparently, the PCM- calculated free energy is different from neither Gibbs free energy nor Helmholtz free energy, but it is called free energy because it involves the work necessary to build up solute in continuum solvent.
-
-
-
-
38
-
-
0031209054
-
-
Canceis, M. T.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 107, 3032-3041.
-
(1997)
J. Chem. Phys.
, vol.107
, pp. 3032-3041
-
-
Cances, M.T.1
Mennucci, B.2
Tomasi, J.3
-
39
-
-
0000913277
-
-
Mammen, M.; Shakhnovich, E. I.; Deutch, J. M.; Whitesides, G. M. J. Org. Chem. 1998, 63, 3821-3830.
-
(1998)
J. Org. Chem.
, vol.63
, pp. 3821-3830
-
-
Mammen, M.1
Shakhnovich, E.I.2
Deutch J., M.3
Whitesides, G.M.4
-
40
-
-
0038626673
-
-
revision D.02; Gaussian, Inc.: Walling-ford, CT
-
Pople, J. A.; Gaussian 03, revision D.02; Gaussian, Inc.: Walling-ford, CT, 2004.
-
(2004)
Gaussian 03
-
-
Pople, J.A.1
-
41
-
-
0011530224
-
-
and references therein
-
Reed, A. E.; Curtis, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 849, and references therein.
-
(1988)
Chem. Rev.
, vol.88
, pp. 849
-
-
Reed, A.E.1
Curtis, L.A.2
Weinhold, F.3
-
42
-
-
65749108727
-
-
evr.
-
evr.
-
-
-
-
43
-
-
65749114692
-
-
ev are 3.6 and 12.2 kcal/mol, respectively) in the PhCN coordination from 2 to 3. These results suggest that the cod dissociation is difficult before PhCN approaches the Ni center
-
ev are 3.6 and 12.2 kcal/mol, respectively) in the PhCN coordination from 2 to 3. These results suggest that the cod dissociation is difficult before PhCN approaches the Ni center
-
-
-
-
44
-
-
2442609566
-
-
Lin, B.-L.; Liu, L.; Fu, Y.; Luo, S.-W.; Chen, Q.; Guo, Q.-X. Organometallics 2004, 23, 2114-2123.
-
(2004)
Organometallics
, vol.23
, pp. 2114-2123
-
-
Lin, B.-L.1
Liu, L.2
Fu, Y.3
Luo, S.-W.4
Chen, Q.5
Guo, Q.-X.6
-
45
-
-
65749097285
-
-
6-7 connects 6 and 7. The IRC calculation did not work because of the very flat potential energy surface around these transition states. See Supporting Information Figure S3 for the geometry and energy changes
-
6-7 connects 6 and 7. The IRC calculation did not work because of the very flat potential energy surface around these transition states. See Supporting Information Figure S3 for the geometry and energy changes
-
-
-
-
46
-
-
65749096516
-
-
See Supporting Information section S2 in page S-13 for a more detailed discussion.
-
See Supporting Information section S2 in page S-13 for a more detailed discussion.
-
-
-
-
47
-
-
65749092743
-
-
3 substitution for alkyne.
-
3 substitution for alkyne.
-
-
-
-
49
-
-
65749095231
-
-
The Ni-CN and Ni-Ph bond energies in 9A were calculated to be 121.8 and 99.1 kcal/mol, respectively. See Supporting Information section S3 in page S-17 for more details of these values.
-
The Ni-CN and Ni-Ph bond energies in 9A were calculated to be 121.8 and 99.1 kcal/mol, respectively. See Supporting Information section S3 in page S-17 for more details of these values.
-
-
-
-
50
-
-
65749103640
-
-
See Supporting Information section S4 in page S-17 for a more detailed discussion.
-
See Supporting Information section S4 in page S-17 for a more detailed discussion.
-
-
-
-
51
-
-
65749115307
-
-
Because 9Aa-R and 9Ab-R easily convert to each other, the concentration ratio [9Aa-R]/[9Ab-R] should be considered to evaluate the regioselectivity.
-
Because 9Aa-R and 9Ab-R easily convert to each other, the concentration ratio [9Aa-R]/[9Ab-R] should be considered to evaluate the regioselectivity.
-
-
-
|