메뉴 건너뛰기




Volumn 204, Issue , 2009, Pages 167-195

Evolutionary fuzzy Ccustering: An overview and efficiency issues

Author keywords

[No Author keywords available]

Indexed keywords


EID: 65549135889     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-642-01088-0_8     Document Type: Review
Times cited : (11)

References (60)
  • 3
    • 0028667333 scopus 로고
    • Clustering with Evolution Strategies
    • Babu, G.P., Murty, M.N.: Clustering with Evolution Strategies. Pattern Recognition 27, 321-329 (1994)
    • (1994) Pattern Recognition , vol.27 , pp. 321-329
    • Babu, G.P.1    Murty, M.N.2
  • 6
    • 0034891848 scopus 로고    scopus 로고
    • Integrative Data Mining: The New Direction in Bioinformatics - Machine Learning for Analyzing Genome-Wide Expression Profiles
    • Bertone, P., Gerstein, M.: Integrative Data Mining: The New Direction in Bioinformatics - Machine Learning for Analyzing Genome-Wide Expression Profiles. IEEE Engineering in Medicine and Biology 20, 33-40 (2001)
    • (2001) IEEE Engineering in Medicine and Biology , vol.20 , pp. 33-40
    • Bertone, P.1    Gerstein, M.2
  • 14
    • 33749142135 scopus 로고    scopus 로고
    • A Fuzzy Extension of the Silhouette Width Criterion for Cluster Analysis
    • Campello, R.J.G.B., Hruschka, E.R.: A Fuzzy Extension of the Silhouette Width Criterion for Cluster Analysis. Fuzzy Sets and Systems 157(21), 2858-2875 (2006)
    • (2006) Fuzzy Sets and Systems , vol.157 , Issue.21 , pp. 2858-2875
    • Campello, R.J.G.B.1    Hruschka, E.R.2
  • 17
    • 0031675486 scopus 로고    scopus 로고
    • Comparative Study of a Genetic Fuzzy C-Means Algorithm and a Validity Guided Fuzzy C-Means Algorithm for Locating Clusters in Noisy Data
    • Egan, M.A., Krishnamoorthy, M., Rajan, K.: Comparative Study of a Genetic Fuzzy C-Means Algorithm and a Validity Guided Fuzzy C-Means Algorithm for Locating Clusters in Noisy Data. In: Proc. IEEE World Congress on Computational Intelligence, pp. 440-445 (1998)
    • (1998) Proc. IEEE World Congress on Computational Intelligence , pp. 440-445
    • Egan, M.A.1    Krishnamoorthy, M.2    Rajan, K.3
  • 23
    • 0032269108 scopus 로고    scopus 로고
    • How Many Clusters? Which Clustering Method? Answer via Model-Based Cluster Analysis
    • Fralley, C., Raftery, A.E.: How Many Clusters? Which Clustering Method? Answer via Model-Based Cluster Analysis. The Computer Journal 41, 578-588 (1998)
    • (1998) The Computer Journal , vol.41 , pp. 578-588
    • Fralley, C.1    Raftery, A.E.2
  • 24
    • 63049091895 scopus 로고    scopus 로고
    • A Review of Evolutionary Algorithms for Data Mining
    • Maimon, O, Rokach, L, eds, Springer, Heidelberg
    • Freitas, A.: A Review of Evolutionary Algorithms for Data Mining. In: Maimon, O., Rokach, L. (eds.) Soft Computing for Knowledge Discovery and Data Mining, pp. 61-93. Springer, Heidelberg (2007)
    • (2007) Soft Computing for Knowledge Discovery and Data Mining , pp. 61-93
    • Freitas, A.1
  • 31
    • 34548316917 scopus 로고    scopus 로고
    • Clustering Gene-Expression Data: A Hybrid Approach that Iterates between k-Means and Evolutionary Search
    • Grosan, C, Abraham, A, Ishibuchi, H, eds, Springer, Heidelberg
    • Hruschka, E.R., Campello, R.J.G.B., de Castro, L.N.: Clustering Gene-Expression Data: A Hybrid Approach that Iterates between k-Means and Evolutionary Search. In: Grosan, C., Abraham, A., Ishibuchi, H. (eds.) Hybrid Evolutionary Algorithms, pp. 313-335. Springer, Heidelberg (2007)
    • (2007) Hybrid Evolutionary Algorithms , pp. 313-335
    • Hruschka, E.R.1    Campello, R.J.G.B.2    de Castro, L.N.3
  • 40
  • 41
    • 0036531325 scopus 로고    scopus 로고
    • Reducing the Time Complexity of the Fuzzy C-Means Algorithm
    • Kolen, J.F., Hutcheson, T.: Reducing the Time Complexity of the Fuzzy C-Means Algorithm. IEEE Trans. on Fuzzy Systems 10, 263-267 (2002)
    • (2002) IEEE Trans. on Fuzzy Systems , vol.10 , pp. 263-267
    • Kolen, J.F.1    Hutcheson, T.2
  • 42
    • 34447311224 scopus 로고    scopus 로고
    • Automated Road Extraction from Satellite Imagery using Hybrid Genetic Algorithms and Cluster Analysis
    • Liu, H., Li, J., Chapman, M.A.: Automated Road Extraction from Satellite Imagery using Hybrid Genetic Algorithms and Cluster Analysis. Journal of Environmental Informatics 1(2), 40-47 (2003)
    • (2003) Journal of Environmental Informatics , vol.1 , Issue.2 , pp. 40-47
    • Liu, H.1    Li, J.2    Chapman, M.A.3
  • 43
  • 45
    • 8844278616 scopus 로고    scopus 로고
    • Fuzzy Partitioning Using Real Coded Variable Length Genetic Algorithm for Pixel Classification
    • Maulik, U., Bandyopadhyay, S.: Fuzzy Partitioning Using Real Coded Variable Length Genetic Algorithm for Pixel Classification. IEEE Trans. on Geosciences and Remote Sensing 41(5), 1075-1081 (2003)
    • (2003) IEEE Trans. on Geosciences and Remote Sensing , vol.41 , Issue.5 , pp. 1075-1081
    • Maulik, U.1    Bandyopadhyay, S.2
  • 47
    • 0000228352 scopus 로고    scopus 로고
    • Milligan, G.: A Monte Carlo Study of Thirty Internal Criterion Measures for Cluster Analysis. Psychometrika 46(2), 187-199 (1981)
    • Milligan, G.: A Monte Carlo Study of Thirty Internal Criterion Measures for Cluster Analysis. Psychometrika 46(2), 187-199 (1981)
  • 48
    • 34250115918 scopus 로고    scopus 로고
    • Milligan, G.W., Cooper, M.C.: An Examination of Procedures for Determining the Number of Clusters in a Data Set. Psychometrika 50, 159-179 (1985)
    • Milligan, G.W., Cooper, M.C.: An Examination of Procedures for Determining the Number of Clusters in a Data Set. Psychometrika 50, 159-179 (1985)
  • 49
    • 23844498540 scopus 로고    scopus 로고
    • A Study of some Fuzzy Cluster Validity Indices, Genetic Clustering and Application to Pixel Classification
    • Pakhira, M.K., Bandyopadhyay, S., Maulik, U.: A Study of some Fuzzy Cluster Validity Indices, Genetic Clustering and Application to Pixel Classification. Fuzzy Sets and Systems 155, 191-214 (2005)
    • (2005) Fuzzy Sets and Systems , vol.155 , pp. 191-214
    • Pakhira, M.K.1    Bandyopadhyay, S.2    Maulik, U.3
  • 51
    • 65549152334 scopus 로고    scopus 로고
    • PhD Thesis, Department of Computer Sciences of the University of Alberta, Canada
    • Pantel, P.A.: Clustering by Commitee, PhD Thesis, Department of Computer Sciences of the University of Alberta, Canada (2003)
    • (2003) Clustering by Commitee
    • Pantel, P.A.1
  • 52
    • 30744477944 scopus 로고    scopus 로고
    • Evolutionary Fuzzy Clustering Algorithm with Knowledge-Based Evaluation and Applications for Gene Expression Profiling
    • Park, H.-S., Yoo, S.-H., Cho, S.-B.: Evolutionary Fuzzy Clustering Algorithm with Knowledge-Based Evaluation and Applications for Gene Expression Profiling. Journal of Computational and Theoretical Nanoscience 2, 1-10 (2005)
    • (2005) Journal of Computational and Theoretical Nanoscience , vol.2 , pp. 1-10
    • Park, H.-S.1    Yoo, S.-H.2    Cho, S.-B.3
  • 56
    • 4544367326 scopus 로고    scopus 로고
    • FCM-Based Model Selection Algorithms for Determining the Number of Clusters
    • Sun, H., Wang, S., Jiang, Q.: FCM-Based Model Selection Algorithms for Determining the Number of Clusters. Pattern Recognition Letters 37, 2027-2037 (2004)
    • (2004) Pattern Recognition Letters , vol.37 , pp. 2027-2037
    • Sun, H.1    Wang, S.2    Jiang, Q.3
  • 57
    • 0036975148 scopus 로고    scopus 로고
    • Pattern Recognition Techniques in Microarray Data Analysis: A Survey
    • Valafar, F.: Pattern Recognition Techniques in Microarray Data Analysis: A Survey. Annals of New York Academy of Sciences 980, 41-64 (2002)
    • (2002) Annals of New York Academy of Sciences , vol.980 , pp. 41-64
    • Valafar, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.