메뉴 건너뛰기




Volumn 3, Issue , 2005, Pages 2380-2387

Metaheuristics for clustering in KDD

Author keywords

[No Author keywords available]

Indexed keywords

HEURISTIC METHODS; KNOWLEDGE ACQUISITION;

EID: 27144533206     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (19)

References (81)
  • 2
    • 7044238453 scopus 로고    scopus 로고
    • The use of a supervised k-means algorithm on real-valued data with applications in health
    • P. W. H. Chung, C. J. Hinde, and M. Ali, editors, Developments in Applied Artificial Intelligence, 16th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems. Springer
    • S. H. Al-Harbi and V. J. Rayward-Smith. The use of a supervised k-means algorithm on real-valued data with applications in health. In P. W. H. Chung, C. J. Hinde, and M. Ali, editors, Developments in Applied Artificial Intelligence, 16th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, volume 2718 of LNCS, pages 575-581. Springer, 2003.
    • (2003) LNCS , vol.2718 , pp. 575-581
    • Al-Harbi, S.H.1    Rayward-Smith, V.J.2
  • 3
    • 0029478402 scopus 로고
    • A tabu search approach to the clustering problem
    • K. Al-Sultan. A tabu search approach to the clustering problem. Pattern Recognition, 28(9):1443-1451, 1995.
    • (1995) Pattern Recognition , vol.28 , Issue.9 , pp. 1443-1451
    • Al-Sultan, K.1
  • 4
    • 38049103082 scopus 로고
    • A near-optimal initial seed value selection in k-means algorithm using a genetic algorithm
    • G. P. Babu and M. N. Murty. A near-optimal initial seed value selection in k-means algorithm using a genetic algorithm. Pattern Recognition Letters, 14(10):763-769, 1993.
    • (1993) Pattern Recognition Letters , vol.14 , Issue.10 , pp. 763-769
    • Babu, G.P.1    Murty, M.N.2
  • 5
    • 33747785233 scopus 로고
    • Simulated annealing for optimal initial seed selection in k-means algorithm
    • G. P. Babu and M. N. Murty. Simulated annealing for optimal initial seed selection in k-means algorithm. Indian Journal of Pure and Applied Mathematics, 25:8594, 1994.
    • (1994) Indian Journal of Pure and Applied Mathematics , vol.25 , pp. 8594
    • Babu, G.P.1    Murty, M.N.2
  • 15
    • 22944449331 scopus 로고    scopus 로고
    • Constrained ant colony optimization for data clustering
    • S.-C. Chu, J. F. Roddick, C.-J. Su, and J.-S. Pan. Constrained ant colony optimization for data clustering. In PRICAI, pages 534-543, 2004.
    • (2004) PRICAI , pp. 534-543
    • Chu, S.-C.1    Roddick, J.F.2    Su, C.-J.3    Pan, J.-S.4
  • 16
    • 9444230302 scopus 로고    scopus 로고
    • Semi-supervised clustering with user feedback
    • Cornell University
    • D. Cohn, R. Caruana, and A. McCallum. Semi-supervised clustering with user feedback, Technical Report TR2003-1892, Cornell University, 2003.
    • (2003) Technical Report , vol.TR2003-1892
    • Cohn, D.1    Caruana, R.2    McCallum, A.3
  • 17
    • 0027696338 scopus 로고
    • Using genetic algorithms for concept learning
    • K. deJong, W. Spears, and D. Gordon. Using genetic algorithms for concept learning. Machine Learning, 13:161-188, 1993.
    • (1993) Machine Learning , vol.13 , pp. 161-188
    • DeJong, K.1    Spears, W.2    Gordon, D.3
  • 19
    • 12244265302 scopus 로고    scopus 로고
    • Semi-supervised clustering using genetic algorithms
    • Rensselaer Polytechnic Institute, Troy, New York
    • A. Demiriz, K. Bennett, and M. Embrechts. Semi-supervised clustering using genetic algorithms. R.P.I. Math Report no. 9901, Rensselaer Polytechnic Institute, Troy, New York, 1999.
    • (1999) R.P.I. Math Report No. 9901 , vol.9901
    • Demiriz, A.1    Bennett, K.2    Embrechts, M.3
  • 26
    • 27144551392 scopus 로고    scopus 로고
    • Data mining tasks and methods: Clustering: Conceptual clustering
    • W. Klösgen and J. M. Zytkow, editors. Oxford University Press, Inc.
    • D. Fisher. Data mining tasks and methods: Clustering: conceptual clustering. In W. Klösgen and J. M. Zytkow, editors, Handbook of Data Mining and Knowledge Discovery, pages 388-396. Oxford University Press, Inc., 2002.
    • (2002) Handbook of Data Mining and Knowledge Discovery , pp. 388-396
    • Fisher, D.1
  • 28
    • 0032140838 scopus 로고    scopus 로고
    • Tabu search algorithm for codebook generation in vector quantization
    • P. Fränti, J. Kivijärvi, and O. Nevalainen. Tabu search algorithm for codebook generation in vector quantization. Pattern Recognition, 31(8):1139-1148, 1998.
    • (1998) Pattern Recognition , vol.31 , Issue.8 , pp. 1139-1148
    • Fränti, P.1    Kivijärvi, J.2    Nevalainen, O.3
  • 30
    • 0346216900 scopus 로고    scopus 로고
    • A novel genetic algorithm for automatic clustering
    • G. Garai and B. B. Chaudhuri. A novel genetic algorithm for automatic clustering. Pattern Recogn. Lett., 25(2):173-187, 2004.
    • (2004) Pattern Recogn. Lett. , vol.25 , Issue.2 , pp. 173-187
    • Garai, G.1    Chaudhuri, B.B.2
  • 31
    • 2542613410 scopus 로고    scopus 로고
    • Scalable clustering methods for data mining
    • N. Ye, editor. Lawrence Erlbaum
    • J. Ghosh. Scalable clustering methods for data mining. In N. Ye, editor, Handbook of Data Mining, pages 247-277. Lawrence Erlbaum, 2003.
    • (2003) Handbook of Data Mining , pp. 247-277
    • Ghosh, J.1
  • 35
    • 0010415411 scopus 로고    scopus 로고
    • Spatial clustering methods in data mining: A survey
    • H. Miller and J. Han, editors. Taylor and Francis
    • J. Han, M. Kamber, and A. Tung. Spatial clustering methods in data mining: A survey. In H. Miller and J. Han, editors, Geographic Data Mining and Knowledge Discovery. Taylor and Francis, 2001.
    • (2001) Geographic Data Mining and Knowledge Discovery
    • Han, J.1    Kamber, M.2    Tung, A.3
  • 36
    • 35048865418 scopus 로고    scopus 로고
    • Evolutionary multiobjective clustering
    • X. Y. et al; editor, Proceedings of PPSN VIII. Springer
    • J. Handl and J. Knowles. Evolutionary multiobjective clustering. In X. Y. et al; editor, Proceedings of PPSN VIII, volume 3242 of LNCS, pages 117-128. Springer, 2004.
    • (2004) LNCS , vol.3242 , pp. 117-128
    • Handl, J.1    Knowles, J.2
  • 37
    • 24344485715 scopus 로고    scopus 로고
    • Exploiting the trade-off -the benefits of multiple objectives in data clustering
    • C. A. C. Coello, A. H. Aguirre, and E. Zitzler, editors, Evolutionary Multi-Criterion Optimization, Third International Conference. Springer
    • J. Handl and J. D. Knowles. Exploiting the trade-off -the benefits of multiple objectives in data clustering. In C. A. C. Coello, A. H. Aguirre, and E. Zitzler, editors, Evolutionary Multi-Criterion Optimization, Third International Conference, volume 3410 of LNCS, pages 547-560. Springer, 2005.
    • (2005) LNCS , vol.3410 , pp. 547-560
    • Handl, J.1    Knowles, J.D.2
  • 38
    • 23944438921 scopus 로고    scopus 로고
    • On the performance of ant-based clustering
    • A. Abraham, M. Köppen, and K. Franke, editors, Design and Application of Hybrid Intelligent Systems, Proc. Third International Conference on Hybrid Intelligent Systems. IOS Press
    • J. Handl, J. D. Knowles, and M. Dorigo. On the performance of ant-based clustering. In A. Abraham, M. Köppen, and K. Franke, editors, Design and Application of Hybrid Intelligent Systems, Proc. Third International Conference on Hybrid Intelligent Systems, volume 105 of Frontiers in Artificial Intelligence and Applications, pages 204-213. IOS Press, 2003.
    • (2003) Frontiers in Artificial Intelligence and Applications , vol.105 , pp. 204-213
    • Handl, J.1    Knowles, J.D.2    Dorigo, M.3
  • 39
    • 35248876574 scopus 로고    scopus 로고
    • Semi-supervised image segmentation by parametric distributional clustering
    • A. Rangarajan, M. A. T. Figueiredo, and J. Zerubia, editors, Proceedings of 4th International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition. Springer
    • L. Hermes and J. M. Buhmann. Semi-supervised image segmentation by parametric distributional clustering. In A. Rangarajan, M. A. T. Figueiredo, and J. Zerubia, editors, Proceedings of 4th International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, volume 2683 of LNCS, pages 229-245. Springer, 2003.
    • (2003) LNCS , vol.2683 , pp. 229-245
    • Hermes, L.1    Buhmann, J.M.2
  • 42
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Z. Huang. Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery, 2(3):283-304, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.3 , pp. 283-304
    • Huang, Z.1
  • 45
  • 48
    • 0024475960 scopus 로고
    • Experiments in projection and clustering by simulated annealing
    • R. W. Klein and R. Dubes. Experiments in projection and clustering by simulated annealing. Pattern Recognition, 22(2):213-220, 1989.
    • (1989) Pattern Recognition , vol.22 , Issue.2 , pp. 213-220
    • Klein, R.W.1    Dubes, R.2
  • 49
    • 27144450271 scopus 로고    scopus 로고
    • Genetic Programming-based construction of features for machine learning and knowledge discovery tasks
    • K. Krawiec. Genetic Programming-based construction of features for machine learning and knowledge discovery tasks. Genetic Programming and Evoluable Machines, 3(4):329-343, 2002.
    • (2002) Genetic Programming and Evoluable Machines , vol.3 , Issue.4 , pp. 329-343
    • Krawiec, K.1
  • 51
    • 0142025151 scopus 로고    scopus 로고
    • Evolutionary semi-supervised fuzzy clustering
    • H. Liu and S.-T. Huang. Evolutionary semi-supervised fuzzy clustering. Pattern Recognition Letters, 24(16):3105-3113, 2003.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.16 , pp. 3105-3113
    • Liu, H.1    Huang, S.-T.2
  • 54
    • 0001198522 scopus 로고    scopus 로고
    • Pattern classification using a hybrid genetic program decision tree approach
    • J. R. K. et al. editor. Morgan Kaufmann
    • R. E. Marmelstein and G. B. Lamont. Pattern classification using a hybrid genetic program decision tree approach. In J. R. K. et al. editor, Genetic Programming 1998: Proceedings of the Third Annual Conference, pages 223-231. Morgan Kaufmann, 1998.
    • (1998) Genetic Programming 1998: Proceedings of the Third Annual Conference , pp. 223-231
    • Marmelstein, R.E.1    Lamont, G.B.2
  • 55
    • 0033715579 scopus 로고    scopus 로고
    • Genetic algorithm-based clustering technique
    • U. Maulik and S. Bandyopadhyay. Genetic algorithm-based clustering technique. Pattern Recognition, 33:1455-1465, 2000.
    • (2000) Pattern Recognition , vol.33 , pp. 1455-1465
    • Maulik, U.1    Bandyopadhyay, S.2
  • 56
    • 0025629591 scopus 로고
    • The use of simulated annealing for clustering data in databases
    • F. J. McErlean, D. A. Bell, and S. I. McClean. The use of simulated annealing for clustering data in databases. Information Systems, 15(2):233-245, 1990.
    • (1990) Information Systems , vol.15 , Issue.2 , pp. 233-245
    • McErlean, F.J.1    Bell, D.A.2    McClean, S.I.3
  • 57
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • Berkley, CA. University of California Press
    • J. McQueen. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pages 281-297, Berkley, CA, 1971. University of California Press.
    • (1971) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability , pp. 281-297
    • McQueen, J.1
  • 58
    • 3142661068 scopus 로고    scopus 로고
    • A new conceptual clustering framework
    • N. Mishra, D. Ron, and R. Swaminathan. A new conceptual clustering framework. Machine Learning, 56(1-3):115-151, 2004.
    • (2004) Machine Learning , vol.56 , Issue.1-3 , pp. 115-151
    • Mishra, N.1    Ron, D.2    Swaminathan, R.3
  • 60
    • 0005268201 scopus 로고    scopus 로고
    • On data clustering with artificial ants
    • A. A. Freitas, editor, Orlando, Florida. AAAI Press
    • N. Monmarche. On data clustering with artificial ants. In A. A. Freitas, editor, Data Mining with Evolutionary Algorithms: Research Directions, pages 23-26, Orlando, Florida, 1999. AAAI Press.
    • (1999) Data Mining with Evolutionary Algorithms: Research Directions , pp. 23-26
    • Monmarche, N.1
  • 61
    • 27144520587 scopus 로고    scopus 로고
    • Independent and simultaneous evolution of fuzzy sleep classifiers by genetic algorithms
    • San Francisco, CA. Morgan Kaufmann
    • C. Mota, H. Ferreira, and A. Rosa. Independent and simultaneous evolution of fuzzy sleep classifiers by genetic algorithms. In Proceedings of the Genetic and Evolutionary Computing Conference GECCO, pages 1622-1629, San Francisco, CA, 1999. Morgan Kaufmann.
    • (1999) Proceedings of the Genetic and Evolutionary Computing Conference GECCO , pp. 1622-1629
    • Mota, C.1    Ferreira, H.2    Rosa, A.3
  • 62
    • 0030189865 scopus 로고    scopus 로고
    • In search of optimal clusters using genetic algorithms
    • C. A. Murthy and N. Chowdhury. In search of optimal clusters using genetic algorithms. Pattern Recognition Letters, 17(8):825-832, 1996.
    • (1996) Pattern Recognition Letters , vol.17 , Issue.8 , pp. 825-832
    • Murthy, C.A.1    Chowdhury, N.2
  • 65
    • 0038683388 scopus 로고    scopus 로고
    • Design of hybrids for the minimum sum-of-squares clustering problem
    • J. Pacheco and O.Valencia. Design of hybrids for the minimum sum-of-squares clustering problem. Computational Statistics and Data Analysis, 43(2):235-248, 2003.
    • (2003) Computational Statistics and Data Analysis , vol.43 , Issue.2 , pp. 235-248
    • Pacheco, J.1    Valencia, O.2
  • 69
    • 0032202775 scopus 로고    scopus 로고
    • Deterministic annealing for clustering, compression, classification, regression, and related optimization problems
    • K. Rose. Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. IEEE Trans. Info. Theory, 86(11):2210-2239, 1998.
    • (1998) IEEE Trans. Info. Theory , vol.86 , Issue.11 , pp. 2210-2239
    • Rose, K.1
  • 70
    • 27144546158 scopus 로고    scopus 로고
    • Evolutionary programming-based fuzzy clustering
    • L. J. Fogel, P. J. Angeline, and T. Bäck, editors. MIT Press
    • M. Sarkar. Evolutionary programming-based fuzzy clustering. In L. J. Fogel, P. J. Angeline, and T. Bäck, editors, Proceedings of the Fifth Annual Conference on Evolutionary Programming, pages 247-254. MIT Press, 1996.
    • (1996) Proceedings of the Fifth Annual Conference on Evolutionary Programming , pp. 247-254
    • Sarkar, M.1
  • 71
    • 0031248740 scopus 로고    scopus 로고
    • A clustering algorithm using an evolutionary programming-based approach
    • M. Sarkar, B. Yegnanarayana, and D. Khemani. A clustering algorithm using an evolutionary programming-based approach. Pattern Recognition Letters, 18(10):975-986, 1997.
    • (1997) Pattern Recognition Letters , vol.18 , Issue.10 , pp. 975-986
    • Sarkar, M.1    Yegnanarayana, B.2    Khemani, D.3
  • 72
    • 0026359031 scopus 로고
    • A simulated annealing algorithm for the clustering problem
    • S. Z. Selim and K. Al-Sultan. A simulated annealing algorithm for the clustering problem. Pattern Recognition, 24(10):1003-1008, 1991.
    • (1991) Pattern Recognition , vol.24 , Issue.10 , pp. 1003-1008
    • Selim, S.Z.1    Al-Sultan, K.2
  • 73
    • 27144488409 scopus 로고    scopus 로고
    • A GA-based neural network weight optimization technique for semi-supervised classifier learning
    • A. A. et al. editor. IOS Press
    • A. Skabar. A GA-based neural network weight optimization technique for semi-supervised classifier learning. In A. A. et al. editor, Design and application of hybrid intelligent systems, pages 139-146. IOS Press, 2003.
    • (2003) Design and Application of Hybrid Intelligent Systems , pp. 139-146
    • Skabar, A.1
  • 74
    • 0034819176 scopus 로고    scopus 로고
    • A genetic approach to the automatic clustering problem
    • L. Tseng and S. B. Yang. A genetic approach to the automatic clustering problem. Pattern Recognition, 34(2):415-424, 2001.
    • (2001) Pattern Recognition , vol.34 , Issue.2 , pp. 415-424
    • Tseng, L.1    Yang, S.B.2
  • 77
    • 27144506737 scopus 로고    scopus 로고
    • Clustering nominal and numerical data: A new distance concept for a hybrid genetic algorithm
    • J. Gottlieb and G. R. Raidl, editors, Proceedings of Evolutionary Computation in Combinatorial Optimization EvoCOP, Coimbra, Portugal. Springer Verlag
    • L. Vermeulen-Jourdan, C. Dhaenens, and E.-G. Talbi. Clustering nominal and numerical data: A new distance concept for a hybrid genetic algorithm. In J. Gottlieb and G. R. Raidl, editors, Proceedings of Evolutionary Computation in Combinatorial Optimization EvoCOP, volume 3004 of LNCS, pages 220-229, Coimbra, Portugal, 2004. Springer Verlag.
    • (2004) LNCS , vol.3004 , pp. 220-229
    • Vermeulen-Jourdan, L.1    Dhaenens, C.2    Talbi, E.-G.3
  • 79
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side-information
    • S. Becker, S. Thrun, and K. Obermayer, editors. MIT Press
    • E. P. Xing, A. Ng, M. I. Jordan, and S. J. Russell. Distance metric learning with application to clustering with side-information. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, (NIPS2002), pages 505-512. MIT Press, 2003.
    • (2003) Advances in Neural Information Processing Systems 15, (NIPS2002) , pp. 505-512
    • Xing, E.P.1    Ng, A.2    Jordan, M.I.3    Russell, S.J.4
  • 80
    • 27144519293 scopus 로고    scopus 로고
    • Generating linguistic fuzzy rules for pattern classification with genetic algorithms
    • Principles and Practice of Knowledge Discovery in Databases (PKDD-99). Springer
    • N. Xiong and E. Frank. Generating linguistic fuzzy rules for pattern classification with genetic algorithms. In Principles and Practice of Knowledge Discovery in Databases (PKDD-99), volume 1704 of Lecture Notes in Computer Science, pages 574-579. Springer, 1999.
    • (1999) Lecture Notes in Computer Science , vol.1704 , pp. 574-579
    • Xiong, N.1    Frank, E.2
  • 81
    • 0026821563 scopus 로고
    • Globally optimal vector quantizer design by stochastic relaxation
    • K. Zeger, J. Vaisey, and A. Gersho. Globally optimal vector quantizer design by stochastic relaxation. IEEE Transactions on Signal Processing, 40(2):310-322, 1992.
    • (1992) IEEE Transactions on Signal Processing , vol.40 , Issue.2 , pp. 310-322
    • Zeger, K.1    Vaisey, J.2    Gersho, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.