메뉴 건너뛰기




Volumn , Issue , 2008, Pages 88-96

Structured learning for non-smooth ranking losses

Author keywords

Max margin structured learning to rank; Non decomposable loss functions

Indexed keywords

DATA SETS; FEATURE MAPS; LEARNING TO RANKS; LINEAR-TIME ALGORITHMS; MARGIN OPTIMIZATIONS; MAX-MARGIN STRUCTURED LEARNING TO RANK; MEAN RECIPROCAL RANKS; MULTI CRITERION; NON SMOOTHES; NON-DECOMPOSABLE LOSS FUNCTIONS; RANKING MODELS; RELEVANCE JUDGMENTS; RESEARCH AREAS; ROC CURVES; SEARCH APPLICATIONS; SEARCH SYSTEMS; TEST CRITERION;

EID: 65449139973     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1401890.1401906     Document Type: Conference Paper
Times cited : (107)

References (24)
  • 2
    • 0242456822 scopus 로고    scopus 로고
    • Optimizing search engines using clickthrough data
    • T. Joachims, "Optimizing search engines using clickthrough data," in SIGKDD Conference. ACM, 2002. http://www.cs.cornell.edu/ People/tj/publications/joachims-02c.pdf
    • (2002) SIGKDD Conference
    • Joachims, T.1
  • 4
    • 31844446804 scopus 로고    scopus 로고
    • A support vector method for multivariate performance measures
    • pdf
    • T. Joachims, "A support vector method for multivariate performance measures," in ICML, 2005, pp. 377-384. http://www.machinelearning. org/proceedings/icml2005/papers/048-ASupport-Joachims, pdf
    • (2005) ICML , pp. 377-384
    • Joachims, T.1
  • 5
    • 33749563073 scopus 로고    scopus 로고
    • Training linear SVMs in linear time
    • -, "Training linear SVMs in linear time," in SIGKDD Conference, 2006, pp. 217-226. http://www.cs.cornell.edu/people/tj/ publications/joachims.06a.pdf
    • (2006) SIGKDD Conference , pp. 217-226
    • Joachims, T.1
  • 6
    • 85157965754 scopus 로고    scopus 로고
    • Learning to rank with nonsmooth cost functions
    • C. J. C. Burges, R. Ragno, and Q. V. Le, "Learning to rank with nonsmooth cost functions," in NIPS, 2006. http://research.microsoft. com/~cburges/papers/LambdaRank.pdf
    • (2006) NIPS
    • Burges, C.J.C.1    Ragno, R.2    Le, Q.V.3
  • 7
    • 34547987951 scopus 로고    scopus 로고
    • Learning to rank: From pairwise approach to listwise approach
    • Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li, "Learning to rank: From pairwise approach to listwise approach," in ICML, 2007, pp. 129-136. http://www.machinelearning.org/proceedings/icml2007/papers/139.pdf
    • (2007) ICML , pp. 129-136
    • Cao, Z.1    Qin, T.2    Liu, T.-Y.3    Tsai, M.-F.4    Li, H.5
  • 8
    • 42549161120 scopus 로고    scopus 로고
    • SoftRank: Optimising non-smooth rank metrics
    • M. Taylor, J. Guiver, S. Robertson, and T. Minka, "SoftRank: Optimising non-smooth rank metrics," in WSDM. ACM, 2008. http://research.microsoft.com/~joguiver/sigir07LetorSoft RankCam.pdf
    • (2008) WSDM
    • Taylor, M.1    Guiver, J.2    Robertson, S.3    Minka, T.4
  • 9
    • 36448983903 scopus 로고    scopus 로고
    • A support vector method for optimizing average precision
    • Y. Yue, T. Finley, F. Radlinski, and T. Joachims, "A support vector method for optimizing average precision," in SIGIR Conference, 2007. http://www.cs.cornell.edu/People/tj/publications/yue-etal-07a.pdf
    • (2007) SIGIR Conference
    • Yue, Y.1    Finley, T.2    Radlinski, F.3    Joachims, T.4
  • 10
    • 57649092193 scopus 로고    scopus 로고
    • McRank: Learning to rank using multiple classification and gradient boosting
    • P. Li, C. J. C. Burges, and Q. Wu, "McRank: Learning to rank using multiple classification and gradient boosting," in NIPS, 2007, pp. 845-852. http://books.nips.cc/papers/files/nips20/NIPS2007.0845.pdf
    • (2007) NIPS , pp. 845-852
    • Li, P.1    Burges, C.J.C.2    Wu, Q.3
  • 11
    • 0000448091 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • MIT Press
    • V. Vapnik, S. Golowich, and A. J. Smola, "Support vector method for function approximation, regression estimation, and signal processing," in Advances in Neural Information Processing Systems. MIT Press, 1996.
    • (1996) Advances in Neural Information Processing Systems
    • Vapnik, V.1    Golowich, S.2    Smola, A.J.3
  • 12
    • 24944537843 scopus 로고    scopus 로고
    • I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, Large margin methods for structured and interdependent output variables, JMLR, 6, no. Sep, pp. 1453-1484, 2005. http://ttic.uchicago.edu/ ~altun/pubs/TsoJoaHofAlt-JMLR.pdf
    • I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, "Large margin methods for structured and interdependent output variables," JMLR, vol. 6, no. Sep, pp. 1453-1484, 2005. http://ttic.uchicago.edu/ ~altun/pubs/TsoJoaHofAlt-JMLR.pdf
  • 13
    • 0041024111 scopus 로고    scopus 로고
    • Overview of the TREC 2001 question answering track
    • The Tenth Text REtrieval Conference
    • E. Voorhees, "Overview of the TREC 2001 question answering track," in The Tenth Text REtrieval Conference, ser. NIST Special Publication, vol. 500-250, 2001, pp. 42-51. http://trec.nist.gov/pubs/trec10/ t10-proceedings.html
    • (2001) ser. NIST Special Publication , vol.500 -250 , pp. 42-51
    • Voorhees, E.1
  • 14
    • 0033645041 scopus 로고    scopus 로고
    • IR evaluation methods for retrieving highly relevant documents
    • K. Järvelin and J. Kekäläinen, "IR evaluation methods for retrieving highly relevant documents," in SIGIR Conference, 2000, pp. 41-48. http://www.info.uta.fi/tutkimus/fire/archive/KJJKSIGIR00.pdf
    • (2000) SIGIR Conference , pp. 41-48
    • Järvelin, K.1    Kekäläinen, J.2
  • 16
    • 65449131941 scopus 로고    scopus 로고
    • LETOR: Benchmark dataset for research on learning to rank for information retrieval
    • T.-Y. Liu, T. Qin, J. Xu, W. Xiong, and H. Li, "LETOR: Benchmark dataset for research on learning to rank for information retrieval," in LR4IR Workshop, 2007. http://research.microsoft.com/users/LETOR/
    • (2007) LR4IR Workshop
    • Liu, T.-Y.1    Qin, T.2    Xu, J.3    Xiong, W.4    Li, H.5
  • 18
    • 84888501154 scopus 로고    scopus 로고
    • Q. V. Le and A. J. Smola, Direct optimization of ranking measures, Feb. 2008, arXiv:0704.3359v1.http://arxiv.org/pdf/0704.3359
    • Q. V. Le and A. J. Smola, "Direct optimization of ranking measures," Feb. 2008, arXiv:0704.3359v1.http://arxiv.org/pdf/0704.3359
  • 19
    • 84888548000 scopus 로고    scopus 로고
    • Learning to rank for Web search: Some new directions
    • July 2007
    • C. Burges, "Learning to rank for Web search: Some new directions," Keynote talk at SIGIR Ranking Workshop, July 2007. http://research.microsoft.com/users/LR4IR-2007/LearningToRankKeynote.Burges.pdf
    • Keynote talk at SIGIR Ranking Workshop
    • Burges, C.1
  • 21
    • 36448961557 scopus 로고    scopus 로고
    • FRank: A ranking method with fidelity loss
    • M.-F. Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, and W.-Y. Ma, "FRank: A ranking method with fidelity loss," in SIGIR Conference, 2007, pp. 383-390. http://portal.acm.org/ft-gateway.cfm?id=1277808&type=pdf
    • (2007) SIGIR Conference , pp. 383-390
    • Tsai, M.-F.1    Liu, T.-Y.2    Qin, T.3    Chen, H.-H.4    Ma, W.-Y.5
  • 22
    • 84888567837 scopus 로고    scopus 로고
    • L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees. Wadsworth & Brooks/Cole, 1984, iSBN: 0-534-98054-6.
    • L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees. Wadsworth & Brooks/Cole, 1984, iSBN: 0-534-98054-6.
  • 24
    • 34547991424 scopus 로고    scopus 로고
    • Solving multiclass support vector machines with LaRank
    • A. Bordes, L. Bottou, P. Gallinari, and J. Weston, "Solving multiclass support vector machines with LaRank," in ICML. ACM, 2007, pp. 89-96. http://www.machinelearning.org/proceedings/icml2007/papers/381.pdf
    • (2007) ICML , pp. 89-96
    • Bordes, A.1    Bottou, L.2    Gallinari, P.3    Weston, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.