메뉴 건너뛰기




Volumn , Issue , 2004, Pages 321-328

Text categorization with many redundant features: Using aggressive feature selection to make SVMs competitive with C4.5

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); COMPUTATIONAL METHODS; DECISION THEORY; FEATURE EXTRACTION; NATURAL LANGUAGE PROCESSING SYSTEMS; NOISE ABATEMENT; VECTORS;

EID: 14344259210     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (148)

References (27)
  • 5
    • 8644229403 scopus 로고    scopus 로고
    • Parameterized generation of labeled datasets for text categorization based on a hierarchical directory
    • To appear in
    • Davidov, D., Gabrilovich, E., & Markovitch, S. (2004). Parameterized generation of labeled datasets for text categorization based on a hierarchical directory. To appear in SIGIR'04.
    • (2004) SIGIR'04
    • Davidov, D.1    Gabrilovich, E.2    Markovitch, S.3
  • 7
    • 85105809948 scopus 로고    scopus 로고
    • Inductive learning algorithms and representations for text categorization
    • Dumais, S., Platt, J., Heckerman, D., & Sahami, M. (1998). Inductive learning algorithms and representations for text categorization. CIKM (pp. 148-155).
    • (1998) CIKM , pp. 148-155
    • Dumais, S.1    Platt, J.2    Heckerman, D.3    Sahami, M.4
  • 9
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • Forman, G. (2003). An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research, 3, 1289-1305.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 10
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant features. ECML'98 (pp. 137-142).
    • (1998) ECML'98 , pp. 137-142
    • Joachims, T.1
  • 11
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • B. Schoelkopf, C. Burges and A. Smola (Eds.). The MIT Press
    • Joachims, T. (1999). Making large-scale SVM learning practical. In B. Schoelkopf, C. Burges and A. Smola (Eds.), Advances in kernel methods - support vector learning. The MIT Press.
    • (1999) Advances in Kernel Methods - Support Vector Learning
    • Joachims, T.1
  • 12
    • 85142688646 scopus 로고
    • Newsweeder: Learning to filter net-news
    • Lang, K. (1995). Newsweeder: Learning to filter net-news. ICML'95(pp. 331-339).
    • (1995) ICML'95 , pp. 331-339
    • Lang, K.1
  • 13
    • 0036161242 scopus 로고    scopus 로고
    • Text categorization with support vector machines: How to represent texts in input space
    • Leopold, E., & Kindermann, J. (2002). Text categorization with support vector machines: How to represent texts in input space. Machine Learning, 46, 423-444.
    • (2002) Machine Learning , vol.46 , pp. 423-444
    • Leopold, E.1    Kindermann, J.2
  • 14
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: A new benchmark collection for text categorization research
    • Lewis, D. D., Yang, Y., Rose, T., & Li, F. (2004). RCV1: A new benchmark collection for text categorization research. JMLR, 5, 361-397.
    • (2004) JMLR , vol.5 , pp. 361-397
    • Lewis, D.D.1    Yang, Y.2    Rose, T.3    Li, F.4
  • 15
    • 84957081878 scopus 로고    scopus 로고
    • Feature subset selection in text learning
    • Mladenic, D. (1998). Feature subset selection in text learning. ECML '98 (pp. 95-100).
    • (1998) ECML '98 , pp. 95-100
    • Mladenic, D.1
  • 17
    • 85141803251 scopus 로고    scopus 로고
    • Thumbs up? Sentiment classification using machine learning techniques
    • Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment classification using machine learning techniques. EMNLP'02 (pp. 79-86).
    • (2002) EMNLP'02 , pp. 79-86
    • Pang, B.1    Lee, L.2    Vaithyanathan, S.3
  • 20
    • 0037818380 scopus 로고    scopus 로고
    • High-performing feature selection for text classification
    • Rogati, M., & Yang, Y. (2002). High-performing feature selection for text classification. CIKM'02 (pp. 659-661).
    • (2002) CIKM'02 , pp. 659-661
    • Rogati, M.1    Yang, Y.2
  • 21
    • 0010836411 scopus 로고    scopus 로고
    • Feature engineering for text classification
    • Scott, S., & Matwin, S. (1999). Feature engineering for text classification. ICML'99 (pp. 379-388).
    • (1999) ICML'99 , pp. 379-388
    • Scott, S.1    Matwin, S.2
  • 22
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Comp. Surveys, 34, 1-47.
    • (2002) ACM Comp. Surveys , vol.34 , pp. 1-47
    • Sebastiani, F.1
  • 24
    • 28044450077 scopus 로고    scopus 로고
    • Selforganizing classification on the reuters news corpus
    • Wermter, S., & Hung, C. (2002). Selforganizing classification on the reuters news corpus. COLING'02.
    • (2002) COLING'02
    • Wermter, S.1    Hung, C.2
  • 25
    • 85024373635 scopus 로고    scopus 로고
    • A re-examination of text categorization methods
    • Yang, Y., & Liu, X. (1999). A re-examination of text categorization methods. SIGIR'99 (pp. 42-49).
    • (1999) SIGIR'99 , pp. 42-49
    • Yang, Y.1    Liu, X.2
  • 26
    • 0003141935 scopus 로고    scopus 로고
    • A comparative study on feature selection in text categorization
    • Yang, Y., & Pedersen, J. (1997). A comparative study on feature selection in text categorization. ICML'97 (pp. 412-420).
    • (1997) ICML'97 , pp. 412-420
    • Yang, Y.1    Pedersen, J.2
  • 27
    • 0036498398 scopus 로고    scopus 로고
    • A study of approaches to hypertext categorization
    • Yang, Y., Slattery, S., & Ghani, R. (2002). A study of approaches to hypertext categorization. JIIS, 18, 219-241.
    • (2002) JIIS , vol.18 , pp. 219-241
    • Yang, Y.1    Slattery, S.2    Ghani, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.