-
1
-
-
33748923996
-
Vesicle pools, docking, priming, and release
-
Becherer U., and Rettig J. Vesicle pools, docking, priming, and release. Cell Tissue Res. 326 (2006) 393-407
-
(2006)
Cell Tissue Res.
, vol.326
, pp. 393-407
-
-
Becherer, U.1
Rettig, J.2
-
2
-
-
0036801359
-
The synaptic vesicle cycle: exocytosis and endocytosis in Drosophila and C. elegans
-
Richmond J.E., and Broadie K. The synaptic vesicle cycle: exocytosis and endocytosis in Drosophila and C. elegans. Curr. Opin. Neurobiol. 12 (2002) 499-507
-
(2002)
Curr. Opin. Neurobiol.
, vol.12
, pp. 499-507
-
-
Richmond, J.E.1
Broadie, K.2
-
3
-
-
2942556680
-
The synaptic vesicle cycle
-
Sudhof T.C. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27 (2004) 509-547
-
(2004)
Annu. Rev. Neurosci.
, vol.27
, pp. 509-547
-
-
Sudhof, T.C.1
-
4
-
-
0032430423
-
Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs
-
Fasshauer D., et al. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 15781-15786
-
(1998)
Proc. Natl. Acad. Sci. U. S. A.
, vol.95
, pp. 15781-15786
-
-
Fasshauer, D.1
-
6
-
-
3442879896
-
Formation, stabilisation and fusion of the readily releasable pool of secretory vesicles
-
Sorensen J.B. Formation, stabilisation and fusion of the readily releasable pool of secretory vesicles. Pflugers Arch. 448 (2004) 347-362
-
(2004)
Pflugers Arch.
, vol.448
, pp. 347-362
-
-
Sorensen, J.B.1
-
7
-
-
3543096759
-
Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution
-
Sutton R.B., et al. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395 (1998) 347-353
-
(1998)
Nature
, vol.395
, pp. 347-353
-
-
Sutton, R.B.1
-
8
-
-
46449090904
-
Supramolecular SNARE assembly precedes hemifusion in SNARE-mediated membrane fusion
-
Lu X., et al. Supramolecular SNARE assembly precedes hemifusion in SNARE-mediated membrane fusion. Nat. Struct. Mol. Biol. 15 (2008) 700-706
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 700-706
-
-
Lu, X.1
-
9
-
-
2342661231
-
Principles of exocytosis and membrane fusion
-
Jahn R. Principles of exocytosis and membrane fusion. Ann. N. Y. Acad. Sci. 1014 (2004) 170-178
-
(2004)
Ann. N. Y. Acad. Sci.
, vol.1014
, pp. 170-178
-
-
Jahn, R.1
-
10
-
-
0037122459
-
RIM1α is required for presynaptic long-term potentiation
-
Castillo P.E., et al. RIM1α is required for presynaptic long-term potentiation. Nature 415 (2002) 327-330
-
(2002)
Nature
, vol.415
, pp. 327-330
-
-
Castillo, P.E.1
-
11
-
-
0034623062
-
Assembly of snare core complexes occurs prior to neurotransmitter release to set the readily-releasable pool of synaptic vesicles
-
Lonart G., and Sudhof T.C. Assembly of snare core complexes occurs prior to neurotransmitter release to set the readily-releasable pool of synaptic vesicles. J. Biol. Chem. 275 (2000) 27703-27707
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 27703-27707
-
-
Lonart, G.1
Sudhof, T.C.2
-
12
-
-
0037204063
-
Differential control of vesicle priming and short-term plasticity by Munc13 isoforms
-
Rosenmund C., et al. Differential control of vesicle priming and short-term plasticity by Munc13 isoforms. Neuron 33 (2002) 411-424
-
(2002)
Neuron
, vol.33
, pp. 411-424
-
-
Rosenmund, C.1
-
13
-
-
0037022308
-
The SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosis
-
Sorensen J.B., et al. The SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosis. Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 1627-1632
-
(2002)
Proc. Natl. Acad. Sci. U. S. A.
, vol.99
, pp. 1627-1632
-
-
Sorensen, J.B.1
-
14
-
-
34250857340
-
Regulation of membrane fusion in synaptic excitation-secretion coupling: speed and accuracy matter
-
Wojcik S.M., and Brose N. Regulation of membrane fusion in synaptic excitation-secretion coupling: speed and accuracy matter. Neuron 55 (2007) 11-24
-
(2007)
Neuron
, vol.55
, pp. 11-24
-
-
Wojcik, S.M.1
Brose, N.2
-
15
-
-
17344376286
-
Tomosyn: a syntaxin-1-binding protein that forms a novel complex in the neurotransmitter release process
-
Fujita Y., et al. Tomosyn: a syntaxin-1-binding protein that forms a novel complex in the neurotransmitter release process. Neuron 20 (1998) 905-915
-
(1998)
Neuron
, vol.20
, pp. 905-915
-
-
Fujita, Y.1
-
16
-
-
25444454048
-
2+-dependent exocytosis of neurotransmitter
-
2+-dependent exocytosis of neurotransmitter. J. Cell Biol. 170 (2005) 1113-1125
-
(2005)
J. Cell Biol.
, vol.170
, pp. 1113-1125
-
-
Baba, T.1
-
17
-
-
33746726458
-
Antagonistic regulation of synaptic vesicle priming by tomosyn and UNC-13
-
McEwen J.M., et al. Antagonistic regulation of synaptic vesicle priming by tomosyn and UNC-13. Neuron 51 (2006) 303-315
-
(2006)
Neuron
, vol.51
, pp. 303-315
-
-
McEwen, J.M.1
-
18
-
-
33750805030
-
Molecular anatomy of a trafficking organelle
-
Takamori S., et al. Molecular anatomy of a trafficking organelle. Cell 127 (2006) 831-846
-
(2006)
Cell
, vol.127
, pp. 831-846
-
-
Takamori, S.1
-
19
-
-
33746853822
-
Tomosyn-1 is involved in a post-docking event required for pancreatic β-cell exocytosis
-
Cheviet S., et al. Tomosyn-1 is involved in a post-docking event required for pancreatic β-cell exocytosis. J. Cell Sci. 119 (2006) 2912-2920
-
(2006)
J. Cell Sci.
, vol.119
, pp. 2912-2920
-
-
Cheviet, S.1
-
20
-
-
33644783907
-
Tomosyn is expressed in β-cells and negatively regulates insulin exocytosis
-
Zhang W., et al. Tomosyn is expressed in β-cells and negatively regulates insulin exocytosis. Diabetes 55 (2006) 574-581
-
(2006)
Diabetes
, vol.55
, pp. 574-581
-
-
Zhang, W.1
-
21
-
-
34547942015
-
Receptor-mediated regulation of tomosyn-syntaxin 1A interactions in bovine adrenal chromaffin cells
-
Gladycheva S.E., et al. Receptor-mediated regulation of tomosyn-syntaxin 1A interactions in bovine adrenal chromaffin cells. J. Biol. Chem. 282 (2007) 22887-22899
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 22887-22899
-
-
Gladycheva, S.E.1
-
22
-
-
0042818205
-
Tomosyn interacts with the t-SNAREs syntaxin4 and SNAP23 and plays a role in insulin-stimulated GLUT4 translocation
-
Widberg C.H., et al. Tomosyn interacts with the t-SNAREs syntaxin4 and SNAP23 and plays a role in insulin-stimulated GLUT4 translocation. J. Biol. Chem. 278 (2003) 35093-35101
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 35093-35101
-
-
Widberg, C.H.1
-
23
-
-
13244292391
-
Two distinct genes drive expression of seven tomosyn isoforms in the mammalian brain, sharing a conserved structure with a unique variable domain
-
Groffen A.J., et al. Two distinct genes drive expression of seven tomosyn isoforms in the mammalian brain, sharing a conserved structure with a unique variable domain. J. Neurochem. 92 (2005) 554-568
-
(2005)
J. Neurochem.
, vol.92
, pp. 554-568
-
-
Groffen, A.J.1
-
24
-
-
8744252596
-
Structural basis for the inhibitory role of tomosyn in exocytosis
-
Pobbati A.V., et al. Structural basis for the inhibitory role of tomosyn in exocytosis. J. Biol. Chem. 279 (2004) 47192-47200
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 47192-47200
-
-
Pobbati, A.V.1
-
25
-
-
0033525719
-
Three splicing variants of tomosyn and identification of their syntaxin- binding region
-
Yokoyama S., et al. Three splicing variants of tomosyn and identification of their syntaxin- binding region. Biochem. Biophys. Res. Commun. 256 (1999) 218-222
-
(1999)
Biochem. Biophys. Res. Commun.
, vol.256
, pp. 218-222
-
-
Yokoyama, S.1
-
26
-
-
34047100822
-
Structure of the yeast polarity protein Sro7 reveals a SNARE regulatory mechanism
-
Hattendorf D.A., et al. Structure of the yeast polarity protein Sro7 reveals a SNARE regulatory mechanism. Nature 446 (2007) 567-571
-
(2007)
Nature
, vol.446
, pp. 567-571
-
-
Hattendorf, D.A.1
-
27
-
-
3142701373
-
Regulation of SNAREs by tomosyn and ROCK: implication in extension and retraction of neurites
-
Sakisaka T., et al. Regulation of SNAREs by tomosyn and ROCK: implication in extension and retraction of neurites. J. Cell Biol. 166 (2004) 17-25
-
(2004)
J. Cell Biol.
, vol.166
, pp. 17-25
-
-
Sakisaka, T.1
-
28
-
-
0031696595
-
Tomosyn binds t-SNARE proteins via a VAMP-like coiled coil
-
Masuda E.S., et al. Tomosyn binds t-SNARE proteins via a VAMP-like coiled coil. Neuron 21 (1998) 479-480
-
(1998)
Neuron
, vol.21
, pp. 479-480
-
-
Masuda, E.S.1
-
29
-
-
33750829722
-
Munc18-1 phosphorylation by protein kinase C potentiates vesicle pool replenishment in bovine chromaffin cells
-
Nili U., et al. Munc18-1 phosphorylation by protein kinase C potentiates vesicle pool replenishment in bovine chromaffin cells. Neuroscience 143 (2006) 487-500
-
(2006)
Neuroscience
, vol.143
, pp. 487-500
-
-
Nili, U.1
-
30
-
-
33845987734
-
Selective activation of cognate SNAREpins by Sec1/Munc18 proteins
-
Shen J., et al. Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128 (2007) 183-195
-
(2007)
Cell
, vol.128
, pp. 183-195
-
-
Shen, J.1
-
31
-
-
0035974886
-
Munc18-1 promotes large dense-core vesicle docking
-
Voets T., et al. Munc18-1 promotes large dense-core vesicle docking. Neuron 31 (2001) 581-591
-
(2001)
Neuron
, vol.31
, pp. 581-591
-
-
Voets, T.1
-
32
-
-
33750241320
-
Munc18-bound syntaxin readily forms SNARE complexes with synaptobrevin in native plasma membranes
-
Zilly F.E., et al. Munc18-bound syntaxin readily forms SNARE complexes with synaptobrevin in native plasma membranes. PLoS Biol. 4 (2006) 1789-1797
-
(2006)
PLoS Biol.
, vol.4
, pp. 1789-1797
-
-
Zilly, F.E.1
-
33
-
-
0042733066
-
The R-SNARE motif of tomosyn forms SNARE core complexes with syntaxin 1 and SNAP-25 and down-regulates exocytosis
-
Hatsuzawa K., et al. The R-SNARE motif of tomosyn forms SNARE core complexes with syntaxin 1 and SNAP-25 and down-regulates exocytosis. J. Biol. Chem. 278 (2003) 31159-31166
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 31159-31166
-
-
Hatsuzawa, K.1
-
34
-
-
24744452186
-
Amisyn regulates exocytosis and fusion pore stability by both syntaxin-dependent and syntaxin-independent mechanisms
-
Constable J.R., et al. Amisyn regulates exocytosis and fusion pore stability by both syntaxin-dependent and syntaxin-independent mechanisms. J. Biol. Chem. 280 (2005) 31615-31623
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 31615-31623
-
-
Constable, J.R.1
-
35
-
-
34548842752
-
Tomosyn negatively regulates CAPS-dependent peptide release at Caenorhabditis elegans synapses
-
Gracheva E.O., et al. Tomosyn negatively regulates CAPS-dependent peptide release at Caenorhabditis elegans synapses. J. Neurosci. 27 (2007) 10176-10184
-
(2007)
J. Neurosci.
, vol.27
, pp. 10176-10184
-
-
Gracheva, E.O.1
-
36
-
-
49949098549
-
Modulating vesicle priming reveals that vesicle immobilization is necessary but not sufficient for fusion-competence
-
Yizhar O., and Ashery U. Modulating vesicle priming reveals that vesicle immobilization is necessary but not sufficient for fusion-competence. PLoS One 3 (2008) e2694
-
(2008)
PLoS One
, vol.3
-
-
Yizhar, O.1
Ashery, U.2
-
37
-
-
1442354782
-
Tomosyn inhibits priming of large dense-core vesicles in a calcium-dependent manner
-
Yizhar O., et al. Tomosyn inhibits priming of large dense-core vesicles in a calcium-dependent manner. Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 2578-2583
-
(2004)
Proc. Natl. Acad. Sci. U. S. A.
, vol.101
, pp. 2578-2583
-
-
Yizhar, O.1
-
38
-
-
33644745585
-
Using microarrays to facilitate positional cloning: identification of tomosyn as an inhibitor of neurosecretion
-
Dybbs M., et al. Using microarrays to facilitate positional cloning: identification of tomosyn as an inhibitor of neurosecretion. PLoS Genet. 1 (2005) 6-16
-
(2005)
PLoS Genet.
, vol.1
, pp. 6-16
-
-
Dybbs, M.1
-
39
-
-
33747364921
-
Tomosyn inhibits synaptic vesicle priming in Caenorhabditis elegans
-
Gracheva E.O., et al. Tomosyn inhibits synaptic vesicle priming in Caenorhabditis elegans. PLoS Biol. 4 (2006) 1426-1437
-
(2006)
PLoS Biol.
, vol.4
, pp. 1426-1437
-
-
Gracheva, E.O.1
-
40
-
-
55949121583
-
Dual inhibition of SNARE complex formation by tomosyn ensures controlled neurotransmitter release
-
Sakisaka T., et al. Dual inhibition of SNARE complex formation by tomosyn ensures controlled neurotransmitter release. J. Cell Biol. 183 (2008) 323-337
-
(2008)
J. Cell Biol.
, vol.183
, pp. 323-337
-
-
Sakisaka, T.1
-
41
-
-
34848928507
-
Multiple functional domains are involved in tomosyn regulation of exocytosis
-
Yizhar O., et al. Multiple functional domains are involved in tomosyn regulation of exocytosis. J. Neurochem. 103 (2007) 604-616
-
(2007)
J. Neurochem.
, vol.103
, pp. 604-616
-
-
Yizhar, O.1
-
42
-
-
0032555126
-
Identification of a minimal core of the synaptic SNARE complex sufficient for reversible assembly and disassembly
-
Fasshauer D., et al. Identification of a minimal core of the synaptic SNARE complex sufficient for reversible assembly and disassembly. Biochemistry 37 (1998) 10354-10362
-
(1998)
Biochemistry
, vol.37
, pp. 10354-10362
-
-
Fasshauer, D.1
-
43
-
-
20544459380
-
Structurally conserved interaction of Lgl family with SNAREs is critical to their cellular function
-
Gangar A., et al. Structurally conserved interaction of Lgl family with SNAREs is critical to their cellular function. Curr. Biol. 15 (2005) 1136-1142
-
(2005)
Curr. Biol.
, vol.15
, pp. 1136-1142
-
-
Gangar, A.1
-
44
-
-
0033549568
-
Yeast homologues of tomosyn and lethal giant larvae function in exocytosis and are associated with the plasma membrane SNARE, Sec9
-
Lehman K., et al. Yeast homologues of tomosyn and lethal giant larvae function in exocytosis and are associated with the plasma membrane SNARE, Sec9. J. Cell Biol. 146 (1999) 125-140
-
(1999)
J. Cell Biol.
, vol.146
, pp. 125-140
-
-
Lehman, K.1
-
45
-
-
0028076764
-
The ancient regulatory-protein family of WD-repeat proteins
-
Neer E.J., et al. The ancient regulatory-protein family of WD-repeat proteins. Nature 371 (1994) 297-300
-
(1994)
Nature
, vol.371
, pp. 297-300
-
-
Neer, E.J.1
-
46
-
-
0033133919
-
The WD repeat: a common architecture for diverse functions
-
Smith T.F., et al. The WD repeat: a common architecture for diverse functions. Trends Biochem. Sci. 24 (1999) 181-185
-
(1999)
Trends Biochem. Sci.
, vol.24
, pp. 181-185
-
-
Smith, T.F.1
-
47
-
-
0028061614
-
The Drosophila lethal(2)giant larvae tumor suppressor protein forms homo-oligomers and is associated with nonmuscle myosin II heavy chain
-
Strand D., et al. The Drosophila lethal(2)giant larvae tumor suppressor protein forms homo-oligomers and is associated with nonmuscle myosin II heavy chain. J. Cell Biol. 127 (1994) 1361-1373
-
(1994)
J. Cell Biol.
, vol.127
, pp. 1361-1373
-
-
Strand, D.1
-
48
-
-
0036156362
-
Mammalian homolog of Drosophila tumor suppressor lethal (2) giant larvae interacts with basolateral exocytic machinery in Madin-Darby canine kidney cells
-
Musch A., et al. Mammalian homolog of Drosophila tumor suppressor lethal (2) giant larvae interacts with basolateral exocytic machinery in Madin-Darby canine kidney cells. Mol. Biol. Cell 13 (2002) 158-168
-
(2002)
Mol. Biol. Cell
, vol.13
, pp. 158-168
-
-
Musch, A.1
-
49
-
-
0031904190
-
Sro7p, a Saccharomyces cerevisiae counterpart of the tumor suppressor l(2)gl protein, is related to myosins in function
-
Kagami M., et al. Sro7p, a Saccharomyces cerevisiae counterpart of the tumor suppressor l(2)gl protein, is related to myosins in function. Genetics 149 (1998) 1717-1727
-
(1998)
Genetics
, vol.149
, pp. 1717-1727
-
-
Kagami, M.1
-
50
-
-
0034618663
-
Tumor suppressors: linking cell polarity and growth control
-
Wodarz A. Tumor suppressors: linking cell polarity and growth control. Curr. Biol. 10 (2000) R624-R626
-
(2000)
Curr. Biol.
, vol.10
-
-
Wodarz, A.1
-
51
-
-
33646540110
-
Lethal giant larvae take on a life of their own
-
Wirtz-Peitz F., and Knoblich J.A. Lethal giant larvae take on a life of their own. Trends Cell Biol. 16 (2006) 234-241
-
(2006)
Trends Cell Biol.
, vol.16
, pp. 234-241
-
-
Wirtz-Peitz, F.1
Knoblich, J.A.2
-
52
-
-
26944465715
-
Myosin 5a controls insulin granule recruitment during late-phase secretion
-
Ivarsson R., et al. Myosin 5a controls insulin granule recruitment during late-phase secretion. Traffic 6 (2005) 1027-1035
-
(2005)
Traffic
, vol.6
, pp. 1027-1035
-
-
Ivarsson, R.1
-
53
-
-
0029027953
-
Role of myosin in neurotransmitter release: functional studies at synapses formed in culture
-
Mochida S. Role of myosin in neurotransmitter release: functional studies at synapses formed in culture. J. Physiol. (Paris) 89 (1995) 83-94
-
(1995)
J. Physiol. (Paris)
, vol.89
, pp. 83-94
-
-
Mochida, S.1
-
54
-
-
3042646322
-
New roles of myosin II during vesicle transport and fusion in chromaffin cells
-
Neco P., et al. New roles of myosin II during vesicle transport and fusion in chromaffin cells. J. Biol. Chem. 279 (2004) 27450-27457
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 27450-27457
-
-
Neco, P.1
-
55
-
-
0037387771
-
Myosins II and V in chromaffin cells: myosin V is a chromaffin vesicle molecular motor involved in secretion
-
Rose S.D., et al. Myosins II and V in chromaffin cells: myosin V is a chromaffin vesicle molecular motor involved in secretion. J. Neurochem. 85 (2003) 287-298
-
(2003)
J. Neurochem.
, vol.85
, pp. 287-298
-
-
Rose, S.D.1
-
56
-
-
26244449813
-
2+-dependent binding of syntaxin-1A
-
2+-dependent binding of syntaxin-1A. Mol. Biol. Cell 16 (2005) 4519-4530
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 4519-4530
-
-
Watanabe, M.1
-
57
-
-
43749101829
-
Myosin II activation and actin reorganization regulate the mode of quantal exocytosis in mouse adrenal chromaffin cells
-
Doreian B.W., et al. Myosin II activation and actin reorganization regulate the mode of quantal exocytosis in mouse adrenal chromaffin cells. J. Neurosci. 28 (2008) 4470-4478
-
(2008)
J. Neurosci.
, vol.28
, pp. 4470-4478
-
-
Doreian, B.W.1
-
58
-
-
44849143151
-
Myosin II contributes to fusion pore expansion during exocytosis
-
Neco P., et al. Myosin II contributes to fusion pore expansion during exocytosis. J. Biol. Chem. 283 (2008) 10949-10957
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 10949-10957
-
-
Neco, P.1
-
59
-
-
0032479425
-
o stimulates a granule-bound phosphatidylinositol 4-kinase by activating RhoA in chromaffin cells
-
o stimulates a granule-bound phosphatidylinositol 4-kinase by activating RhoA in chromaffin cells. J. Biol. Chem. 273 (1998) 16913-16920
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 16913-16920
-
-
Gasman, S.1
-
61
-
-
13444267951
-
Phosphorylation-induced autoinhibition regulates the cytoskeletal protein Lethal (2) giant larvae
-
Betschinger J., et al. Phosphorylation-induced autoinhibition regulates the cytoskeletal protein Lethal (2) giant larvae. Curr. Biol. 15 (2005) 276-282
-
(2005)
Curr. Biol.
, vol.15
, pp. 276-282
-
-
Betschinger, J.1
-
63
-
-
54949110127
-
Docking of secretory vesicles is syntaxin dependent
-
de Wit H., et al. Docking of secretory vesicles is syntaxin dependent. PLoS One 1 (2006) e126
-
(2006)
PLoS One
, vol.1
-
-
de Wit, H.1
-
64
-
-
34548263167
-
Open syntaxin docks synaptic vesicles
-
Hammarlund M., et al. Open syntaxin docks synaptic vesicles. PLoS Biol. 5 (2007) e198
-
(2007)
PLoS Biol.
, vol.5
-
-
Hammarlund, M.1
-
65
-
-
33748129499
-
UNC-13 and UNC-10/rim localize synaptic vesicles to specific membrane domains
-
Weimer R.M., et al. UNC-13 and UNC-10/rim localize synaptic vesicles to specific membrane domains. J. Neurosci. 26 (2006) 8040-8047
-
(2006)
J. Neurosci.
, vol.26
, pp. 8040-8047
-
-
Weimer, R.M.1
-
66
-
-
37249047613
-
Tomosyn negatively regulates both synaptic transmitter and neuropeptide release at the C. elegans neuromuscular junction
-
Gracheva E.O., et al. Tomosyn negatively regulates both synaptic transmitter and neuropeptide release at the C. elegans neuromuscular junction. J. Physiol. 585 (2007) 705-709
-
(2007)
J. Physiol.
, vol.585
, pp. 705-709
-
-
Gracheva, E.O.1
-
67
-
-
0035913332
-
An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming
-
Richmond J.E., et al. An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 412 (2001) 338-341
-
(2001)
Nature
, vol.412
, pp. 338-341
-
-
Richmond, J.E.1
-
68
-
-
5444228457
-
A new platform to study the molecular mechanisms of exocytosis
-
Mezer A., et al. A new platform to study the molecular mechanisms of exocytosis. J. Neurosci. 24 (2004) 8838-8846
-
(2004)
J. Neurosci.
, vol.24
, pp. 8838-8846
-
-
Mezer, A.1
-
69
-
-
0035341309
-
SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis
-
Lang T., et al. SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J. 20 (2001) 2202-2213
-
(2001)
EMBO J.
, vol.20
, pp. 2202-2213
-
-
Lang, T.1
-
70
-
-
22944450057
-
Lethal giant larvae proteins interact with the exocyst complex and are involved in polarized exocytosis
-
Zhang X., et al. Lethal giant larvae proteins interact with the exocyst complex and are involved in polarized exocytosis. J. Cell Biol. 170 (2005) 273-283
-
(2005)
J. Cell Biol.
, vol.170
, pp. 273-283
-
-
Zhang, X.1
|