메뉴 건너뛰기




Volumn 60, Issue 3, 2009, Pages 377-392

Travelling wave fronts in nonlocal delayed reaction-diffusion systems and applications

Author keywords

Minimal wave speed.; Nonlocality; Travelling wave front

Indexed keywords

BELOUSOV-ZHABOTINSKII REACTIONS; LOGISTIC MODELS; MINIMAL WAVE SPEED.; NON LOCALS; NONLOCALITY; REACTION-DIFFUSION SYSTEMS; SCHAUDER'S FIXED POINT THEOREMS; TRAVELLING WAVE FRONT; UPPER-LOWER SOLUTIONS;

EID: 65349142526     PISSN: 00442275     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00033-007-7005-y     Document Type: Article
Times cited : (142)

References (44)
  • 2
    • 0031282920 scopus 로고    scopus 로고
    • Travelling waves in a convolution model for phase transition
    • P. W. Bates, P. C. Fife, X. Ren, X. Wang, Travelling waves in a convolution model for phase transition, Arch. Rational Mech. Anal., 138 (1997), 105-136.
    • (1997) Arch. Rational Mech. Anal , vol.138 , pp. 105-136
    • Bates, P.W.1    Fife, P.C.2    Ren, X.3    Wang, X.4
  • 3
    • 24744455460 scopus 로고    scopus 로고
    • Dirichlet boundary problem for the nonlocal Cahn-Hilliard equation
    • P. W. Bates, J. Han, Dirichlet boundary problem for the nonlocal Cahn-Hilliard equation, J. Math. Anal. Appl., 311 (2005), 289-312.
    • (2005) J. Math. Anal. Appl , vol.311 , pp. 289-312
    • Bates, P.W.1    Han, J.2
  • 4
    • 33644900769 scopus 로고    scopus 로고
    • On a nonlocal phase-field system
    • P. W. Bates, J. Han, G. Zhao, On a nonlocal phase-field system, Nonlinear Anal. TMA, 64 (2006), 2251-2278.
    • (2006) Nonlinear Anal. TMA , vol.64 , pp. 2251-2278
    • Bates, P.W.1    Han, J.2    Zhao, G.3
  • 6
    • 3142699474 scopus 로고    scopus 로고
    • Uniqueness of travelling waves for nonlocal monostable equations
    • J. Carr, A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439.
    • (2004) Proc. Amer. Math. Soc , vol.132 , pp. 2433-2439
    • Carr, J.1    Chmaj, A.2
  • 7
    • 0001203924 scopus 로고    scopus 로고
    • Existence, uniqueness and asymptotic stability of travelling waves in non-local evolution equation
    • X. Chen, Existence, uniqueness and asymptotic stability of travelling waves in non-local evolution equation, Adv. Differential Equations, 2 (1997), 125-160.
    • (1997) Adv. Differential Equations , vol.2 , pp. 125-160
    • Chen, X.1
  • 8
    • 0031905159 scopus 로고    scopus 로고
    • A reduced model approach
    • Wave propagation mediated by GABAB synapse and rebound excitation in an inhibitory network
    • B synapse and rebound excitation in an inhibitory network: A reduced model approach, J. Computational Neuroscience, 5 (1998), 53-69.
    • (1998) J. Computational Neuroscience , vol.5 , pp. 53-69
    • Chen, Z.1    Ermentrout, B.2
  • 9
    • 12244259831 scopus 로고    scopus 로고
    • Lattice Dynamical Systems
    • J.W. Macki, P. Zecca Eds, Dynamical Systems, Springer, Berlin
    • S. N. Chow, Lattice Dynamical Systems, in: J.W. Macki, P. Zecca (Eds.), Dynamical Systems, Lecture Notes in Mathematics, Vol. 1822, Springer, Berlin 2003, pp. 1-102.
    • (2003) Lecture Notes in Mathematics , vol.1822 , pp. 1-102
    • Chow, S.N.1
  • 11
    • 34548337269 scopus 로고    scopus 로고
    • On uniqueness and monotonicity of solutions of nonlocal reaction diffusion equation
    • J. Coville, On uniqueness and monotonicity of solutions of nonlocal reaction diffusion equation, Ann. Mat. Pura Appl., 185 (2006), 461-485.
    • (2006) Ann. Mat. Pura Appl , vol.185 , pp. 461-485
    • Coville, J.1
  • 12
    • 12444337556 scopus 로고    scopus 로고
    • Propagation speed of travelling fronts in nonlocal reaction-diffusion equation
    • J. Coville, L. Dupaigne, Propagation speed of travelling fronts in nonlocal reaction-diffusion equation, Nonlinear Analysis TMA, 60 (2005), 797-819.
    • (2005) Nonlinear Analysis TMA , vol.60 , pp. 797-819
    • Coville, J.1    Dupaigne, L.2
  • 13
    • 0041704608 scopus 로고    scopus 로고
    • Travelling fronts solutions in integrodifferential equations
    • J. Coville, L. Dupaigne, Travelling fronts solutions in integrodifferential equations, C. R. Acad. Sci. Paris, 337 (2003), 25-30.
    • (2003) C. R. Acad. Sci. Paris , vol.337 , pp. 25-30
    • Coville, J.1    Dupaigne, L.2
  • 14
  • 16
    • 84971116294 scopus 로고
    • Existence and uniqueness of travelling waves for a neural network
    • B. Ermentrout, J. Mcleod, Existence and uniqueness of travelling waves for a neural network, Proc. Roy. Soc. Edinburgh, 123A (1994), 461-478.
    • (1994) Proc. Roy. Soc. Edinburgh , vol.123 A , pp. 461-478
    • Ermentrout, B.1    Mcleod, J.2
  • 17
    • 0000268135 scopus 로고
    • The wave of advance of advantageous gene
    • R. A. Fisher, The wave of advance of advantageous gene, Ann. Eugen., 7 (1937), 355-369.
    • (1937) Ann. Eugen , vol.7 , pp. 355-369
    • Fisher, R.A.1
  • 19
    • 45049088836 scopus 로고    scopus 로고
    • Travelling wave solutions in cellular neural networks with multiple time delays
    • C. H. Hsu, S. Y. Yang, Travelling wave solutions in cellular neural networks with multiple time delays, Discrete Contin. Dyn. Syst., Suppl. (2005), 930-939.
    • (2005) Discrete Contin. Dyn. Syst , Issue.SUPPL. , pp. 930-939
    • Hsu, C.H.1    Yang, S.Y.2
  • 20
    • 0007063034 scopus 로고
    • Existence of a travelling wave solution of the Belousov-Zhabotinskii system
    • Ya. I. Kanel, Existence of a travelling wave solution of the Belousov-Zhabotinskii system, Diiferetsial'npe Uravneniya, 26 (1990), 652-660.
    • (1990) Diiferetsial'npe Uravneniya , vol.26 , pp. 652-660
    • Kanel, Y.I.1
  • 21
    • 0002434002 scopus 로고
    • Existence of travelling-wave type solutions for the Belousov-Zhabotinskii system equations
    • A. Ya. Kapel, Existence of travelling-wave type solutions for the Belousov-Zhabotinskii system equations, Sibirskii Mathematicheskii Zhurnal, 32 (1991), 47-59.
    • (1991) Sibirskii Mathematicheskii Zhurnal , vol.32 , pp. 47-59
    • Kapel, A.Y.1
  • 22
    • 33646721912 scopus 로고    scopus 로고
    • Existence of traveling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems
    • W. T. Li, G. Lin, S. Ruan, Existence of traveling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems, Nonlinearity, 19 (2006), 1253-1273.
    • (2006) Nonlinearity , vol.19 , pp. 1253-1273
    • Li, W.T.1    Lin, G.2    Ruan, S.3
  • 23
    • 84867942512 scopus 로고    scopus 로고
    • On the diffusive Nicholson's Blowflies equation with nonlocal delays
    • in press
    • W. T. Li, S. Ruan, Z. C. Wang, On the diffusive Nicholson's Blowflies equation with nonlocal delays, J. Nonlinear Sci., in press.
    • J. Nonlinear Sci
    • Li, W.T.1    Ruan, S.2    Wang, Z.C.3
  • 24
    • 34547272692 scopus 로고    scopus 로고
    • Traveling fronts in diffusive and cooperative Lotka-Volterra system with non-local delays
    • W. T. Li, Z. C. Wang, Traveling fronts in diffusive and cooperative Lotka-Volterra system with non-local delays, Z. Angew. Math. Phys. 58 (2007), 571-591.
    • (2007) Z. Angew. Math. Phys , vol.58 , pp. 571-591
    • Li, W.T.1    Wang, Z.C.2
  • 25
    • 33751552431 scopus 로고    scopus 로고
    • Asymptotic speeds of spread and traveling waves for monotone semiflows with applications
    • X. Liang, X.Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2006), 1-40.
    • (2006) Comm. Pure Appl. Math , vol.60 , pp. 1-40
    • Liang, X.1    Zhao, X.Q.2
  • 26
    • 0035836903 scopus 로고    scopus 로고
    • Travelling wavefronts for delayed reaction-diffusion systems via a fixed point theorem
    • S. Ma, Travelling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differential Equations, 171 (2001), 294-314.
    • (2001) J. Differential Equations , vol.171 , pp. 294-314
    • Ma, S.1
  • 28
    • 65349123322 scopus 로고    scopus 로고
    • J. D. Murray, Mathematical Biology, Springer, Berlin-Heidelberg- New York 1993.
    • J. D. Murray, Mathematical Biology, Springer, Berlin-Heidelberg- New York 1993.
  • 30
    • 21744444381 scopus 로고    scopus 로고
    • Travelling fronts in a nonlocal model for phase separation in external field
    • E. Orlandi, L. Triolo, Travelling fronts in a nonlocal model for phase separation in external field, Proc. Roy. Soc. Edinburgh, 127A (1997), 823-835.
    • (1997) Proc. Roy. Soc. Edinburgh , vol.127 A , pp. 823-835
    • Orlandi, E.1    Triolo, L.2
  • 31
    • 0001584326 scopus 로고
    • Asymptotic behavior and traveling wave solutions for parabolic functional differential equations
    • K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations, Trans. Amer. Math. Soc., 302 (1987), 587-615.
    • (1987) Trans. Amer. Math. Soc , vol.302 , pp. 587-615
    • Schaaf, K.W.1
  • 32
    • 0346621911 scopus 로고
    • Travelling-front solutions for integro-differential equations, I
    • K. Schumacher, Travelling-front solutions for integro-differential equations, I, J. Reine Angew. Math., 316 (1980), 54-70.
    • (1980) J. Reine Angew. Math , vol.316 , pp. 54-70
    • Schumacher, K.1
  • 34
    • 0345116416 scopus 로고    scopus 로고
    • Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models
    • H. R. Thieme, X. Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470.
    • (2003) J. Differential Equations , vol.195 , pp. 430-470
    • Thieme, H.R.1    Zhao, X.Q.2
  • 35
    • 0007124670 scopus 로고
    • The existence of travelling wavefront solutions of a model of the Belousov-Zhabotinskii reaction
    • W. C. Troy, The existence of travelling wavefront solutions of a model of the Belousov-Zhabotinskii reaction, J. Differential Equations, 36 (1980), 89-98.
    • (1980) J. Differential Equations , vol.36 , pp. 89-98
    • Troy, W.C.1
  • 37
    • 32044459052 scopus 로고    scopus 로고
    • Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays
    • Z. C. Wang, W.T. Li, S. Ruan, Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays, J. Differential Equations, 222 (2006), 185-232.
    • (2006) J. Differential Equations , vol.222 , pp. 185-232
    • Wang, Z.C.1    Li, W.T.2    Ruan, S.3
  • 38
    • 34249084413 scopus 로고    scopus 로고
    • Existence and stability of traveling wave fronts in reaction advection diffusion equations
    • Z. C. Wang, W. T. Li, S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations, J. Differential Equations 238 (2007), 153-200.
    • (2007) J. Differential Equations , vol.238 , pp. 153-200
    • Wang, Z.C.1    Li, W.T.2    Ruan, S.3
  • 40
    • 0001651766 scopus 로고    scopus 로고
    • Asymptotic and periodic boundary value problems of mixed FDEs and wave solutions of lattice differential equations
    • J. Wu, X. Zou, Asymptotic and periodic boundary value problems of mixed FDEs and wave solutions of lattice differential equations, J. Differential Equations, 135 (1997), 315-357.
    • (1997) J. Differential Equations , vol.135 , pp. 315-357
    • Wu, J.1    Zou, X.2
  • 41
    • 0343717093 scopus 로고    scopus 로고
    • Travelling wave fronts of reaction-diffusion systems with delay
    • J. Wu, X. Zou, Travelling wave fronts of reaction-diffusion systems with delay, J. Dynam. Differential Equations, 13 (2001), 651-687.
    • (2001) J. Dynam. Differential Equations , vol.13 , pp. 651-687
    • Wu, J.1    Zou, X.2
  • 43
    • 38249033033 scopus 로고
    • Travelling wavefront solutions of Noyes-field system for Belousov-Zhabotinskii reaction
    • Q. Ye, M. Wang, Travelling wavefront solutions of Noyes-field system for Belousov-Zhabotinskii reaction, Nonlinear Analysis TMA, 11 (1987), 1289-1302.
    • (1987) Nonlinear Analysis TMA , vol.11 , pp. 1289-1302
    • Ye, Q.1    Wang, M.2
  • 44
    • 0037106115 scopus 로고    scopus 로고
    • Delay induced travelling wave fronts in reaction diffusion equations of KPP-Fisher type
    • X. Zou, Delay induced travelling wave fronts in reaction diffusion equations of KPP-Fisher type, J. Comput. Appl. Math., 146 (2002), 309-321.
    • (2002) J. Comput. Appl. Math , vol.146 , pp. 309-321
    • Zou, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.