메뉴 건너뛰기




Volumn 58, Issue 4, 2007, Pages 571-591

Traveling fronts in diffusive and cooperative Lotka-Volterra system with nonlocal delays

Author keywords

Iterative technique; Lotka Volterra system; Nonlocal delays; Traveling wave fronts

Indexed keywords


EID: 34547272692     PISSN: 00442275     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00033-006-5125-4     Document Type: Article
Times cited : (37)

References (20)
  • 2
    • 0344578958 scopus 로고    scopus 로고
    • Monotone traveling fronts in age-structured reaction-diffusion model of a single species
    • J. Al-Omari, S. A. Gourley, Monotone traveling fronts in age-structured reaction-diffusion model of a single species, J. Math. Biol. 45 (2002), 294-312.
    • (2002) J. Math. Biol , vol.45 , pp. 294-312
    • Al-Omari, J.1    Gourley, S.A.2
  • 3
    • 0346040342 scopus 로고    scopus 로고
    • Dynamics of a strongly nonlocal reaction-diffusion population model
    • J. Billingham, Dynamics of a strongly nonlocal reaction-diffusion population model, Non-linearity 17 (2004), 313-346.
    • (2004) Non-linearity , vol.17 , pp. 313-346
    • Billingham, J.1
  • 4
    • 0024965270 scopus 로고
    • Aggregation and the competitive exclusion principle
    • N. F. Britton, Aggregation and the competitive exclusion principle, J. Theoret. Biol. 136 (1989), 57-66.
    • (1989) J. Theoret. Biol , vol.136 , pp. 57-66
    • Britton, N.F.1
  • 5
    • 0025545718 scopus 로고
    • Spatial structures and periodic traveling waves in an integro-deferential reaction-diffusion population model
    • N. F. Britton, Spatial structures and periodic traveling waves in an integro-deferential reaction-diffusion population model, SIAM J. Appl. Math. 50 (1990), 1663-1688.
    • (1990) SIAM J. Appl. Math , vol.50 , pp. 1663-1688
    • Britton, N.F.1
  • 6
    • 34250627892 scopus 로고
    • Geometric singular perturbation theory for ordinary differential equations
    • N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979), 53-98.
    • (1979) J. Differential Equations , vol.31 , pp. 53-98
    • Fenichel, N.1
  • 7
    • 0034277973 scopus 로고    scopus 로고
    • Traveling front solutions of a nonlocal Fisher equation
    • S. A. Gourley, Traveling front solutions of a nonlocal Fisher equation, J. Math. Biol. 41 (2000), 272-284.
    • (2000) J. Math. Biol , vol.41 , pp. 272-284
    • Gourley, S.A.1
  • 8
    • 0012189671 scopus 로고    scopus 로고
    • A predator-prey reaction-diffusion system with nonlocal effects
    • S. A. Gourley, N. F. Britton, A predator-prey reaction-diffusion system with nonlocal effects, J. Math. Biol. 34 (1996), 297-333.
    • (1996) J. Math. Biol , vol.34 , pp. 297-333
    • Gourley, S.A.1    Britton, N.F.2
  • 9
    • 0035384407 scopus 로고    scopus 로고
    • Spatio-temporal pattern formation in a nonlocal reaction-diffusion equation
    • S. A. Gourley, M. A. J. Chaplain, F. A. Davidson, Spatio-temporal pattern formation in a nonlocal reaction-diffusion equation, Dyn. Syst. 16 (2001), 173-192.
    • (2001) Dyn. Syst , vol.16 , pp. 173-192
    • Gourley, S.A.1    Chaplain, M.A.J.2    Davidson, F.A.3
  • 10
    • 1542616886 scopus 로고    scopus 로고
    • Wavefronts and global stability in a time-delayed population model with stage structure
    • S. A. Gourley, Y. Kuang, Wavefronts and global stability in a time-delayed population model with stage structure, Proc. Roy. Soc. Lond. A 59 (2003), 1563-1579.
    • (2003) Proc. Roy. Soc. Lond. A , vol.59 , pp. 1563-1579
    • Gourley, S.A.1    Kuang, Y.2
  • 11
    • 2442624461 scopus 로고    scopus 로고
    • Convergence and traveling fronts in functional differential equations with nonlocal terms: A competition model
    • S. A. Gourley, S. Ruan, Convergence and traveling fronts in functional differential equations with nonlocal terms: a competition model, SIAM J. Math. Anal. 35 (2003), 806-822.
    • (2003) SIAM J. Math. Anal , vol.35 , pp. 806-822
    • Gourley, S.A.1    Ruan, S.2
  • 12
    • 0037101519 scopus 로고    scopus 로고
    • Traveling wavefronts in diffusive and cooperative Lotka-Volterra system with delays
    • J. Huang, X. Zou, Traveling wavefronts in diffusive and cooperative Lotka-Volterra system with delays, J. Math. Anal. Appl. 271 (2002), 455-466.
    • (2002) J. Math. Anal. Appl , vol.271 , pp. 455-466
    • Huang, J.1    Zou, X.2
  • 13
    • 84867929521 scopus 로고    scopus 로고
    • Traveling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects
    • D. Liang, J. Wu, Traveling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects, J. Nonlinear Sci. 13 (2003), 289-310.
    • (2003) J. Nonlinear Sci , vol.13 , pp. 289-310
    • Liang, D.1    Wu, J.2
  • 14
    • 34547335999 scopus 로고
    • Traveling waves for a cooperative and a competive-cooperative systems
    • ed. by M. Shearer, SIAM, Philadelphia, PA
    • K. Mischaikow, Traveling waves for a cooperative and a competive-cooperative systems, in Viscous Profiles and Numerical Methods for Shock Waves, ed. by M. Shearer, SIAM, Philadelphia, PA, 1991, pp. 125-141.
    • (1991) Viscous Profiles and Numerical Methods for Shock Waves , pp. 125-141
    • Mischaikow, K.1
  • 15
    • 32044440101 scopus 로고    scopus 로고
    • A reaction-diffusion model for a single species with age structure. I, Traveling wavefronts on unbounded domains
    • J. W.-H. So, J. Wu, X. Zou, A reaction-diffusion model for a single species with age structure. I, Traveling wavefronts on unbounded domains, Proc. Roy. Soc. Lond. A 457 (2003), 1841-1853.
    • (2003) Proc. Roy. Soc. Lond. A , vol.457 , pp. 1841-1853
    • So, J.W.-H.1    Wu, J.2    Zou, X.3
  • 16
    • 32044459052 scopus 로고    scopus 로고
    • Traveling wave fronts in reaction-diffusion systems with spatio-temporal delays
    • Z. C. Wang, W. T. Li, S. Ruan, Traveling wave fronts in reaction-diffusion systems with spatio-temporal delays, J. Differential Equations, 222 (2006), 185-232.
    • (2006) J. Differential Equations , vol.222 , pp. 185-232
    • Wang, Z.C.1    Li, W.T.2    Ruan, S.3
  • 17
    • 0343717093 scopus 로고    scopus 로고
    • Traveling wave fronts of reaction-diffusion systems with delay
    • J. Wu, X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dynam. Diff. Eqns. 13(2001), 651-687.
    • (2001) J. Dynam. Diff. Eqns , vol.13 , pp. 651-687
    • Wu, J.1    Zou, X.2
  • 18
    • 85126458043 scopus 로고    scopus 로고
    • Traveling wave and convergence in stage-structured reaction-diffusion competive models with nonlocal delays
    • in press
    • R. Xu, M. A. J. Chaplain, F. A. Davidson, Traveling wave and convergence in stage-structured reaction-diffusion competive models with nonlocal delays, Chao, Solitions and Fractals, in press.
    • Chao, Solitions and Fractals
    • Xu, R.1    Chaplain, M.A.J.2    Davidson, F.A.3
  • 19
    • 21944443660 scopus 로고    scopus 로고
    • Existence of traveling wave fronts in delayed reaction-diffusion systems via the monotone iteration method
    • X. Zou, J. Wu, Existence of traveling wave fronts in delayed reaction-diffusion systems via the monotone iteration method, Proc. Amer. Math. Soc. 125 (1997), 2589-2598.
    • (1997) Proc. Amer. Math. Soc , vol.125 , pp. 2589-2598
    • Zou, X.1    Wu, J.2
  • 20
    • 0036725475 scopus 로고    scopus 로고
    • Analysis of linear determinacy for spead in cooperative models
    • H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spead in cooperative models, J. Math. Biol. 45 (2002), 183-218.
    • (2002) J. Math. Biol , vol.45 , pp. 183-218
    • Weinberger, H.F.1    Lewis, M.A.2    Li, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.