메뉴 건너뛰기




Volumn 59, Issue SUPPL. 7, 2008, Pages 5-18

Regulation by exercise of skeletal muscle content of mitochondria and GLUT4

Author keywords

AMP kinase; Calcium; Mitochondrial biogenesis; PGC 1

Indexed keywords

ADENOSINE DIPHOSPHATE; ADENOSINE PHOSPHATE; ADENOSINE TRIPHOSPHATE; ADENYLATE KINASE; CALCINEURIN; CALCIUM; CALCIUM CALMODULIN DEPENDENT PROTEIN KINASE II; CALCIUM CALMODULIN DEPENDENT PROTEIN KINASE IV; FATTY ACID; GLUCOSE TRANSPORTER 4; LACTIC ACID; MITOCHONDRIAL DNA; MITOCHONDRIAL PROTEIN; MITOCHONDRIAL TRANSCRIPTION FACTOR A; MITOGEN ACTIVATED PROTEIN KINASE P38; NUCLEAR PROTEIN; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR DELTA; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1ALPHA; PHOSPHATE; UNCLASSIFIED DRUG; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1; PEROXISOME-PROLIFERATOR-ACTIVATED RECEPTOR-GAMMA COACTIVATOR-1; TRANSCRIPTION FACTOR;

EID: 63649121321     PISSN: 08675910     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (161)

References (92)
  • 1
    • 0014198263 scopus 로고
    • 2 uptake and respiratory enzyme activity in skeletal muscle
    • 2 uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 1967; 242: 2278-2282.
    • (1967) J Biol Chem , vol.242 , pp. 2278-2282
    • Holloszy, J.O.1
  • 2
    • 0015158588 scopus 로고
    • Adaptation of muscle to exercise. Increase in levels of palmityl CoA synthetase, and in the capacity to oxidize fatty acids
    • Mole PA, Oscai LB, Holloszy JO. Adaptation of muscle to exercise. Increase in levels of palmityl CoA synthetase, and in the capacity to oxidize fatty acids. J Clin Invest 1971; 50: 2323-2330.
    • (1971) J Clin Invest , vol.50 , pp. 2323-2330
    • Mole, P.A.1    Oscai, L.B.2    Holloszy, J.O.3
  • 3
    • 0016281582 scopus 로고
    • Enzymes involved in ketone utilization in different types of muscle: Adaptation to exercise
    • Winder WW, Baldwin KM, Holloszy JO. Enzymes involved in ketone utilization in different types of muscle: Adaptation to exercise. Eur J Biochem 1974; 47: 461-467.
    • (1974) Eur J Biochem , vol.47 , pp. 461-467
    • Winder, W.W.1    Baldwin, K.M.2    Holloszy, J.O.3
  • 4
    • 0014968409 scopus 로고
    • Mitochondrial citric acid cycle and related enzymes: Adaptive response to exercise
    • Holloszy JO, Oscai LB, Don IJ, Mole PA. Mitochondrial citric acid cycle and related enzymes: Adaptive response to exercise. Biochem Biophys Res Commun 1970; 40: 1368-1373.
    • (1970) Biochem Biophys Res Commun , vol.40 , pp. 1368-1373
    • Holloszy, J.O.1    Oscai, L.B.2    Don, I.J.3    Mole, P.A.4
  • 5
    • 0015240345 scopus 로고
    • Biochemical adaptations in muscle II. Response of mitochondrial ATPase, creatine phosphokinase, and adenylate kinase activities in skeletal muscle to exercise
    • Oscai LB, Holloszy JO. Biochemical adaptations in muscle II. Response of mitochondrial ATPase, creatine phosphokinase, and adenylate kinase activities in skeletal muscle to exercise. J Biol Chem 1971; 246: 6968-6972.
    • (1971) J Biol Chem , vol.246 , pp. 6968-6972
    • Oscai, L.B.1    Holloszy, J.O.2
  • 7
    • 0035112481 scopus 로고    scopus 로고
    • Plasticity in skeletal, cardiac and smooth muscle. Invited Review: Contractile activity-induced mitochondrial biogenesis in skeletal muscle
    • Hood DA. Plasticity in skeletal, cardiac and smooth muscle. Invited Review: Contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 2001; 90: 1137-1157.
    • (2001) J Appl Physiol , vol.90 , pp. 1137-1157
    • Hood, D.A.1
  • 8
    • 0002887220 scopus 로고
    • Skeletal muscle adaptability: Significance for metabolism and performance
    • Saltin B, Gollnick PD. Skeletal muscle adaptability: significance for metabolism and performance. In: Handbook of Physiology, Section 10, 1983, pp. 555-631.
    • (1983) Handbook of Physiology, Section 10 , pp. 555-631
    • Saltin, B.1    Gollnick, P.D.2
  • 11
    • 0015865749 scopus 로고
    • The ultrastructure of normal human skeletal muscle. a morphometric analysis on untrained men, women and well-trained orienteers
    • Hoppeler H, Luthi P, Claassen H, Weibel ER, Howald H. The ultrastructure of normal human skeletal muscle. A morphometric analysis on untrained men, women and well-trained orienteers. Pflugers Arch 1973; 344: 217-232.
    • (1973) Pflugers Arch , vol.344 , pp. 217-232
    • Hoppeler, H.1    Luthi, P.2    Claassen, H.3    Weibel, E.R.4    Howald, H.5
  • 12
    • 0015288981 scopus 로고
    • Respiratory capacity of white, red, and intermediate muscle: Adaptive response to exercise
    • Baldwin KM, Klinkerfuss GH, Terjung RL, Mole PA, Holloszy JO. Respiratory capacity of white, red, and intermediate muscle: Adaptive response to exercise. Am J Physiol 1972; 222: 373-378.
    • (1972) Am J Physiol , vol.222 , pp. 373-378
    • Baldwin, K.M.1    Klinkerfuss, G.H.2    Terjung, R.L.3    Mole, P.A.4    Holloszy, J.O.5
  • 14
    • 0023645086 scopus 로고
    • Influence of mitochondrial content on the sensitivity of respiratory control
    • Dudley GA, Tullson PC, Terjung RL. Influence of mitochondrial content on the sensitivity of respiratory control. J Biol Chem 1987; 262: 9109-9114.
    • (1987) J Biol Chem , vol.262 , pp. 9109-9114
    • Dudley, G.A.1    Tullson, P.C.2    Terjung, R.L.3
  • 15
    • 0025249970 scopus 로고
    • Endurance training decreases plasma glucose turnover and oxidation during moderate-intensity exercise in men
    • Coggan AR, Kohrt WM, Spina RJ, Bier DM, Holloszy JO. Endurance training decreases plasma glucose turnover and oxidation during moderate-intensity exercise in men. J Appl Physiol 1990; 68: 990-996. (Pubitemid 20136423)
    • (1990) Journal of Applied Physiology , vol.68 , Issue.3 , pp. 990-996
    • Coggan, A.R.1    Kohrt, W.M.2    Spina, R.J.3    Bier, D.M.4    Holloszy, J.O.5
  • 17
    • 0027364841 scopus 로고
    • Effect of endurance-training on plasma free fatty acid turnover and oxidation during exercise
    • Martin WH, Dalsky GP, Hurley BF, et al. Effect of endurance-training on plasma free fatty acid turnover and oxidation during exercise. Am J Physiol 1993; 265: E708-E714.
    • (1993) Am J Physiol , vol.265
    • Martin, W.H.1    Dalsky, G.P.2    Hurley, B.F.3
  • 18
    • 0019979177 scopus 로고
    • Regulation of glycogenolysis in human skeletal muscle at rest and during exercise
    • Chasiotis D, Sahlin K, Hultman E. Regulation of glycogenolysis in human skeletal muscle at rest and during exercise. J Appl Physiol 1982; 53: 708-715.
    • (1982) J Appl Physiol , vol.53 , pp. 708-715
    • Chasiotis, D.1    Sahlin, K.2    Hultman, E.3
  • 19
    • 0024799078 scopus 로고
    • Regulation of glycogenolysis in human skeletal muscle
    • Ren J-M, Hultman E. Regulation of glycogenolysis in human skeletal muscle. J Appl Physiol 1989; 67: 2243-2248. (Pubitemid 20032218)
    • (1989) Journal of Applied Physiology , vol.67 , Issue.6 , pp. 2243-2248
    • Ren, J.-M.1    Hultman, E.2
  • 22
    • 0025313512 scopus 로고
    • NRF-1: A trans-activator of nuclear-encoded respiratory genes in animal cells
    • Evans MJ, Scarpulla RC. NRF-1: a trans-activator of nuclear-encoded respiratory genes in animal cells. Genes Dev 1990; 4: 1023-1034. (Pubitemid 20188977)
    • (1990) Genes and Development , vol.4 , Issue.6 , pp. 1023-1034
    • Evans, M.J.1    Scarpulla, R.C.2
  • 23
    • 0027256435 scopus 로고
    • Identity of GABP with NRF-2, a multisubunit activator of cytochrome oxidase expression, reveals a cellular role for and ETS domain activator of viral promoters
    • Virbasius JV, Virbasius CA, Scarpulla RC. Identity of GABP with NRF-2, a multisubunit activator of cytochrome oxidase expression, reveals a cellular role for an ETS domain activator of viral promoters. Genes Dev 1993; 7: 380-392. (Pubitemid 23139232)
    • (1993) Genes and Development , vol.7 , Issue.3 , pp. 380-392
    • Virbasius, J.V.1    Virbasius, C.A.2    Scarpulla, R.C.3
  • 24
    • 0028011017 scopus 로고
    • Activation of the human mitochondrial transcription factor a gene by nuclear respiratory factors: A potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis
    • Virbasius JV, Scarpulla RC. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: A potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci USA 1994; 91: 1309-1313.
    • (1994) Proc Natl Acad Sci USA , vol.91 , pp. 1309-1313
    • Virbasius, J.V.1    Scarpulla, R.C.2
  • 25
    • 0037029049 scopus 로고    scopus 로고
    • Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells
    • DOI 10.1016/S0378-1119(01)00809-5, PII S0378111901008095
    • Scarpulla RC. Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 2002; 286: 81-89. (Pubitemid 34273864)
    • (2002) Gene , vol.286 , Issue.1 , pp. 81-89
    • Scarpulla, R.C.1
  • 27
    • 0037174798 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and -γ
    • Huss JM, Kopp RP, Kelly DP. Peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and -γ. J Biol Chem 2002; 277: 40265-40274.
    • (2002) J Biol Chem , vol.277 , pp. 40265-40274
    • Huss, J.M.1    Kopp, R.P.2    Kelly, D.P.3
  • 28
    • 0033977890 scopus 로고    scopus 로고
    • The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes
    • DOI 10.1128/MCB.20.5.1868-1876.2000
    • Vega R, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 2000; 20: 1868-1876. (Pubitemid 30100203)
    • (2000) Molecular and Cellular Biology , vol.20 , Issue.5 , pp. 1868-1876
    • Vega, R.B.1    Huss, J.M.2    Kelly, D.P.3
  • 29
    • 0038660688 scopus 로고    scopus 로고
    • The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor α (ERRα)
    • DOI 10.1074/jbc.M212923200
    • Schreiber SN, Knutti D, Brogli K, Uhlmann T, Kralli A. The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor α (ERRα). J Biol Chem 2003; 278: 9013-9018. (Pubitemid 36800379)
    • (2003) Journal of Biological Chemistry , vol.278 , Issue.11 , pp. 9013-9018
    • Schreiber, S.N.1    Knutti, D.2    Brogli, K.3    Uhlmann, T.4    Kralli, A.5
  • 30
    • 0033538473 scopus 로고    scopus 로고
    • Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
    • Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999; 98: 115-124.
    • (1999) Cell , vol.98 , pp. 115-124
    • Wu, Z.1    Puigserver, P.2    Andersson, U.3
  • 31
    • 0033803048 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis
    • Lehman JJ, Barger PM, Kovacs A, Saffitz J, Medeiros DM, Kelly DP. Peroxisome proliferator-activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 2000; 106: 847-856.
    • (2000) J Clin Invest , vol.106 , pp. 847-856
    • Lehman, J.J.1    Barger, P.M.2    Kovacs, A.3    Saffitz, J.4    Medeiros, D.M.5    Kelly, D.P.6
  • 32
    • 0037102256 scopus 로고    scopus 로고
    • Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres
    • Lin J, Wu H, Tarr PT, et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 2002; 418: 797-801.
    • (2002) Nature , vol.418 , pp. 797-801
    • Lin, J.1    Wu, H.2    Tarr, P.T.3
  • 33
    • 37549025047 scopus 로고    scopus 로고
    • A role for the transcriptional coactivator PGC-1α in muscle refueling
    • Wende AR, Schaeffer PJ, Parker GJ, et al. A role for the transcriptional coactivator PGC-1α in muscle refueling. J Biol Chem 2007; 282: 36642-36651.
    • (2007) J Biol Chem , vol.282 , pp. 36642-36651
    • Wende, A.R.1    Schaeffer, P.J.2    Parker, G.J.3
  • 34
    • 24144463983 scopus 로고    scopus 로고
    • Metabolic control through the PGC-1 family of transcription coactivators
    • DOI 10.1016/j.cmet.2005.05.004, PII S1550413105001427
    • Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metabolism 2005; 1: 361-370. (Pubitemid 43960626)
    • (2005) Cell Metabolism , vol.1 , Issue.6 , pp. 361-370
    • Lin, J.1    Handschin, C.2    Spiegelman, B.M.3
  • 35
    • 0036903174 scopus 로고    scopus 로고
    • Adaptations of skeletal muscle to exercise: Rapid increase in the transcriptional coactivator PGC-1
    • Baar K, Wende AR, Jones TE, et al. Adaptations of skeletal muscle to exercise: Rapid increase in the transcriptional coactivator PGC-1. FASEB J 2002; 16: 1879-1886.
    • (2002) FASEB J , vol.16 , pp. 1879-1886
    • Baar, K.1    Wende, A.R.2    Jones, T.E.3
  • 37
    • 0036386911 scopus 로고    scopus 로고
    • Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle
    • Terada S, Goto M, Kato M, Kawanaka K, Shimokawa T, Tabata I. Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochem Biophys Res Commun 2002; 296: 350-354.
    • (2002) Biochem Biophys Res Commun , vol.296 , pp. 350-354
    • Terada, S.1    Goto, M.2    Kato, M.3    Kawanaka, K.4    Shimokawa, T.5    Tabata, I.6
  • 38
    • 0037322888 scopus 로고    scopus 로고
    • Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle
    • DOI 10.1113/jphysiol.2002.034850
    • Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J Physiol 2003; 546: 851-858. (Pubitemid 36204518)
    • (2003) Journal of Physiology , vol.546 , Issue.3 , pp. 851-858
    • Pilegaard, H.1    Saltin, B.2    Neufer, D.P.3
  • 39
    • 0347993714 scopus 로고    scopus 로고
    • PGC-1α mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle
    • DOI 10.1152/japplphysiol.00765.2003
    • Norrbom J, Sundberg CJ, Ameln H, Kraus WE, Jansson E, Gustafsson T. PGC-1α mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. J Appl Physiol 2004; 96: 189-194. (Pubitemid 38032000)
    • (2004) Journal of Applied Physiology , vol.96 , Issue.1 , pp. 189-194
    • Norrbom, J.1    Sundberg, C.J.2    Ameln, H.3    Kraus, W.E.4    Jansson, E.5    Gustafsson, T.6
  • 42
    • 2342477730 scopus 로고    scopus 로고
    • Erra and Gabpa/b specify PGC-1α-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle
    • Mootha V, Handschin C, Arlow D, et al. Erra and Gabpa/b specify PGC-1α-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci USA 2004; 101: 6570-6575.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 6570-6575
    • Mootha, V.1    Handschin, C.2    Arlow, D.3
  • 43
    • 18244399631 scopus 로고    scopus 로고
    • Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1
    • Puigserver P, Rhee J, Lin J, et al. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. Mol Cell 2001; 8: 971-982.
    • (2001) Mol Cell , vol.8 , pp. 971-982
    • Puigserver, P.1    Rhee, J.2    Lin, J.3
  • 46
    • 3543054528 scopus 로고    scopus 로고
    • Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle
    • Widegren U, Jiang XJ, Krook A, et al. Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle. FASEB J 1998; 12: 1379-1389.
    • (1998) FASEB J , vol.12 , pp. 1379-1389
    • Widegren, U.1    Jiang, X.J.2    Krook, A.3
  • 47
    • 21244477127 scopus 로고    scopus 로고
    • Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway
    • Akimoto T, Pohnert SC, Li P, et al. Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem 2005; 280: 19587-19593.
    • (2005) J Biol Chem , vol.280 , pp. 19587-19593
    • Akimoto, T.1    Pohnert, S.C.2    Li, P.3
  • 51
    • 52749095883 scopus 로고    scopus 로고
    • Functional interaction of regulatory factors with the Pgc-1α promoter in response to exercise by in vivo imaging
    • DOI 10.1152/ajpcell.00104.2008
    • Akimoto T, Li P, Yan Z. Functional interaction of regulatory factors with the Pgc-1α promoter in response to exercise by in vivo imaging. Am J Physiol Cell Physiol 2008; 295: C288-C292. (Pubitemid 352755804)
    • (2008) American Journal of Physiology - Cell Physiology , vol.295 , Issue.1
    • Akimoto, T.1    Li, P.2    Yan, Z.3
  • 52
    • 0025094347 scopus 로고
    • Effects of exercise-training on insulin-regulatable glucose-transporter protein levels in rat skeletal muscle
    • Rodnick KJ, Holloszy JO, Mondon CE, James DE. Effects of exercise-training on insulin-regulatable glucose-transporter protein levels in rat skeletal muscle. Diabetes 1990; 39: 1425-1429.
    • (1990) Diabetes , vol.39 , pp. 1425-1429
    • Rodnick, K.J.1    Holloszy, J.O.2    Mondon, C.E.3    James, D.E.4
  • 53
    • 0025614980 scopus 로고
    • Effect of endurance-training on glucose transport capacity and glucose transporter expression in rat skeletal muscle
    • Ploug T, Stallknecht BM, Pedersen O, et al. Effect of endurance-training on glucose transport capacity and glucose transporter expression in rat skeletal muscle. Am J Physiol 1990; 259: E778-E786.
    • (1990) Am J Physiol , vol.259
    • Ploug, T.1    Stallknecht, B.M.2    Pedersen, O.3
  • 54
    • 0025299343 scopus 로고
    • Exercise training increases glucose transporter protein GLUT-4 in skeletal muscle of obese Zucker (fa/fa) rats
    • DOI 10.1016/0014-5793(90)80960-Q
    • Friedman JE, Sherman WM, Reed MJ, Elton CW, Dohm GL. Exercise-training increases glucose transporter protein GLUT4 in skeletal muscle of obese Zucker (fa/fa) rats. FEBS Lett 1990; 268: 13-16. (Pubitemid 20233818)
    • (1990) FEBS Letters , vol.268 , Issue.1 , pp. 13-16
    • Friedman, J.E.1    Sherman, W.M.2    Reed, M.J.3    Elton, C.W.4    Dohm, G.L.5
  • 55
    • 0026803256 scopus 로고
    • Glucose transporter number, function, and subcellular distribution in rat skeletal muscle after exercise training
    • Goodyear LJ, Hirshman MF, Valyou PM, Horton ES. Glucose transporter number, function, and subcellular distribution in rat skeletal muscle after exercise training. Diabetes 1992; 41: 1091-1099.
    • (1992) Diabetes , vol.41 , pp. 1091-1099
    • Goodyear, L.J.1    Hirshman, M.F.2    Valyou, P.M.3    Horton, E.S.4
  • 56
    • 28544438180 scopus 로고    scopus 로고
    • PGC-1α coactivates PDK4 gene expression via the orphan nuclear receptor ERRα: A mechanism for transcriptional control of muscle glucose metabolism
    • DOI 10.1128/MCB.25.24.10684-10694.2005
    • Wende AR, Huss JM, Schaeffer PJ, Giguere V, Kelly DP. PGC-1α coactivates PDK4 gene expression via the orphan nuclear receptor ERRα: a mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol 2005; 25: 10684-10694. (Pubitemid 41747115)
    • (2005) Molecular and Cellular Biology , vol.25 , Issue.24 , pp. 10684-10694
    • Wende, A.R.1    Huss, J.M.2    Schaeffer, P.J.3    Giguere, V.4    Kelly, D.P.5
  • 58
    • 0026588689 scopus 로고
    • Exercise-training, glucose transporters and glucose transport in rat skeletal muscles
    • Rodnick KJ, Henriksen EJ, James DE, Holloszy JO. Exercise-training, glucose transporters and glucose transport in rat skeletal muscles. Am J Physiol 1992; 262: C9-C14.
    • (1992) Am J Physiol , vol.262
    • Rodnick, K.J.1    Henriksen, E.J.2    James, D.E.3    Holloszy, J.O.4
  • 59
    • 0028287972 scopus 로고
    • Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle
    • Ren J-M, Semenkovich CF, Gulve EA, Gao J, Holloszy JO. Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle. J Biol Chem 1994; 269: 14396-14401. (Pubitemid 24193989)
    • (1994) Journal of Biological Chemistry , vol.269 , Issue.20 , pp. 14396-14401
    • Ren, J.-M.1    Semenkovich, C.F.2    Gulve, E.A.3    Gao, J.4    Holloszy, J.O.5
  • 60
    • 0034717280 scopus 로고    scopus 로고
    • The MEF2A isoform is required for striated muscle-specific expression of the insulin-responsive GLUT4 glucose transporter
    • DOI 10.1074/jbc.M910259199
    • Mora S, Pessin JE. The MEF2A isoform is required for striated muscle-specific expression of the insulin-responsive GLUT4 glucose transporter. J Biol Chem 2000; 275: 16323-16328. (Pubitemid 30366948)
    • (2000) Journal of Biological Chemistry , vol.275 , Issue.21 , pp. 16323-16328
    • Mora, S.1    Pessin, J.E.2
  • 61
    • 33644910891 scopus 로고    scopus 로고
    • Exercise increases MEF2- And GEF DNA-binding activity in human skeletal muscle
    • DOI 10.1096/fj.05-4671fje
    • McGee J, Sparling D, Olson AL, Hargreaves M. Exercise increases MEF2- and GEF DNA-binding activity in human skeletal muscle. FASEB J 2006; 20: 348-349. (Pubitemid 46671167)
    • (2006) FASEB Journal , vol.20 , Issue.2 , pp. 348-349
    • McGee, S.L.1    Sparling, D.2    Olson, A.-L.3    Hargreaves, M.4
  • 62
    • 0042415526 scopus 로고    scopus 로고
    • Skeletal muscle overexpression of nuclear respiratory factor 1 increases glucose transport capacity
    • Baar K, Song Z, Semenkovich CF, et al. Skeletal muscle overexpression of nuclear respiratory factor 1 increases glucose transport capacity. FASEB J 2003; 17: 1666-1673.
    • (2003) FASEB J , vol.17 , pp. 1666-1673
    • Baar, K.1    Song, Z.2    Semenkovich, C.F.3
  • 63
    • 45549087482 scopus 로고    scopus 로고
    • Nuclear respiratory factor 1 controls myocyte enhancer factor 2A transcription to provide a mechanism for coordinate expression of respiratory chain subunits
    • Ramachandran B, Yu G, Gulick T. Nuclear respiratory factor 1 controls myocyte enhancer factor 2A transcription to provide a mechanism for coordinate expression of respiratory chain subunits. J Biol Chem 2008; 283: 11935-11946.
    • (2008) J Biol Chem , vol.283 , pp. 11935-11946
    • Ramachandran, B.1    Yu, G.2    Gulick, T.3
  • 65
    • 0030865910 scopus 로고    scopus 로고
    • Muscle glycogen accumulation after endurance exercise in trained and untrained individuals
    • Hickner RC, Fisher JS, Hansen PA, et al. Muscle glycogen accumulation after endurance exercise in trained and untrained individuals. J Appl Physiol 1997; 83: 897-903.
    • (1997) J Appl Physiol , vol.83 , pp. 897-903
    • Hickner, R.C.1    Fisher, J.S.2    Hansen, P.A.3
  • 66
    • 0031046804 scopus 로고    scopus 로고
    • Effect of endurance exercise training on muscle glycogen supercompensation in rats
    • Nakatani A, Han D-H, Hansen PA, et al. Effect of endurance exercise training on muscle glycogen supercompensation in rats. J Appl Physiol 1997; 82: 711-715.
    • (1997) J Appl Physiol , vol.82 , pp. 711-715
    • Nakatani, A.1    Han, D.-H.2    Hansen, P.A.3
  • 69
    • 33846012164 scopus 로고    scopus 로고
    • Role of AMPKα2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle
    • Jorgensen SB, Treebak JT, Viollet B, et al. Role of AMPKα2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle. Am J Physiol 2007; 292: E331-E339.
    • (2007) Am J Physiol , vol.292
    • Jorgensen, S.B.1    Treebak, J.T.2    Viollet, B.3
  • 70
    • 0032704115 scopus 로고    scopus 로고
    • Chronic activation of 5′-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle
    • Holmes BF, Kurth-Kraczek EJ, Winder WW. Chronic activation of 5′-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J Appl Physiol 1999; 87: 1990-1995.
    • (1999) J Appl Physiol , vol.87 , pp. 1990-1995
    • Holmes, B.F.1    Kurth-Kraczek, E.J.2    Winder, W.W.3
  • 71
    • 0034014002 scopus 로고    scopus 로고
    • Increased expression of GLUT-4 and hexokinase in rat epitrochlearis muscles exposed to AICAR in vitro
    • Ojuka EO, Nolte LA, Holloszy JO. Increased expression of GLUT-4 and hexokinase in rat epitrochlearis muscles exposed to AICAR in vitro. J Appl Physiol 2000; 88: 1072-1075. (Pubitemid 30154913)
    • (2000) Journal of Applied Physiology , vol.88 , Issue.3 , pp. 1072-1075
    • Ojuka, E.O.1    Nolte, L.A.2    Holloszy, J.O.3
  • 73
    • 33644695373 scopus 로고    scopus 로고
    • Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein kinase
    • Holmes BF, Sparling DP, Olson AL, Winder WW, Dohm GL. Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein kinase. Am J Physiol 2008; 289: E1071-E1076.
    • (2008) Am J Physiol , vol.289
    • Holmes, B.F.1    Sparling, D.P.2    Olson, A.L.3    Winder, W.W.4    Dohm, G.L.5
  • 74
    • 42449161465 scopus 로고    scopus 로고
    • AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5
    • McGee SL, van Denderen BJ, Howlett KF, et al. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 2008; 57: 860-867.
    • (2008) Diabetes , vol.57 , pp. 860-867
    • McGee, S.L.1    Van Denderen, B.J.2    Howlett, K.F.3
  • 76
  • 79
    • 0242582447 scopus 로고    scopus 로고
    • Skeletal Muscle Reprogramming by Activation of Calcineurin Improves Insulin Action on Metabolic Pathways
    • DOI 10.1074/jbc.M304510200
    • Ryder JW, Bassel-Duby R, Olson EN, Zierath JR. Skeletal muscle reprogramming by activation of calcineurin improves insulin action on metabolic pathways. J Biol Chem 2003; 278: 44298-44304. (Pubitemid 37377175)
    • (2003) Journal of Biological Chemistry , vol.278 , Issue.45 , pp. 44298-44304
    • Ryder, J.W.1    Bassel-Duby, R.2    Olson, E.N.3    Zierath, J.R.4
  • 80
    • 4544355935 scopus 로고    scopus 로고
    • Calcineurin and calcium/calmoduln-dependent protein kinase activate distinct metabolic gene regulatory programs in cardiac muscle
    • Schaeffer PJ, Wende AR, Magee CJ, et al. Calcineurin and calcium/calmoduln-dependent protein kinase activate distinct metabolic gene regulatory programs in cardiac muscle. J Biol Chem 2004; 279: 39593-39603.
    • (2004) J Biol Chem , vol.279 , pp. 39593-39603
    • Schaeffer, P.J.1    Wende, A.R.2    Magee, C.J.3
  • 81
    • 0037066459 scopus 로고    scopus 로고
    • Regulation of mitochondrial biogenesis in skeletal muscle by CaMK
    • Wu H, Kanatous SB, Thurmond FA, et al. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 2002; 296: 349-352.
    • (2002) Science , vol.296 , pp. 349-352
    • Wu, H.1    Kanatous, S.B.2    Thurmond, F.A.3
  • 82
    • 33847265875 scopus 로고    scopus 로고
    • Calcineurin regulates skeletal muscle metabolism via coordinated changes in gene expression
    • DOI 10.1074/jbc.M609208200
    • Long YC, Glund S, Garcia-Roves PM, Zierath JR. Calcineurin regulates skeletal muscle metabolism via coordinated changes in gene expression. J Biol Chem 2007; 282: 1607-1614. (Pubitemid 47076703)
    • (2007) Journal of Biological Chemistry , vol.282 , Issue.3 , pp. 1607-1614
    • Yun, C.L.1    Glund, S.2    Garcia-Roves, P.M.3    Zierath, J.R.4
  • 83
    • 34547092191 scopus 로고    scopus 로고
    • Calcium induces increases in peroxisome proliferator-activated receptor γ coactivator-1α and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation
    • DOI 10.1074/jbc.M611252200
    • Wright DC, Geiger PC, Han D-H, Jones TE, Holloszy JO. Calcium induces increases in peroxisome proliferator-activated receptor γ coactivator-1α and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J Biol Chem 2007; 282: 18793-18799. (Pubitemid 47100154)
    • (2007) Journal of Biological Chemistry , vol.282 , Issue.26 , pp. 18793-18799
    • Wright, D.C.1    Geiger, P.C.2    Han, D.-H.3    Jones, T.E.4    Holloszy, J.O.5
  • 85
    • 14644411018 scopus 로고    scopus 로고
    • Calcineurin does not mediate exercise-induced increase in muscle GLUT4
    • DOI 10.2337/diabetes.54.3.624
    • Garcia-Roves PM, Jones TE, Otani K, Han D-H, Holloszy JO. Calcineurin does not mediate the exercise-induced increase in muscle GLUT4. Diabetes 2005; 54: 624-628. (Pubitemid 40322063)
    • (2005) Diabetes , vol.54 , Issue.3 , pp. 624-628
    • Garcia-Roves, P.M.1    Jones, T.E.2    Otani, K.3    Han, D.-H.4    Holloszy, J.O.5
  • 86
    • 0642303113 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor d controls muscle development and oxydative capability
    • Luquet S, Lopez-Soriano J, Holst D, et al. Peroxisome proliferator-activated receptor d controls muscle development and oxydative capability. FASEB J 2003; 17: 2299-2301.
    • (2003) FASEB J , vol.17 , pp. 2299-2301
    • Luquet, S.1    Lopez-Soriano, J.2    Holst, D.3
  • 87
    • 8844276054 scopus 로고    scopus 로고
    • Regulation of muscle fiber type and running endurance by PPARδ
    • Wang Y-X, Zhang C-L, Yu RT, et al. Regulation of muscle fiber type and running endurance by PPARδ. PLOS Biology 2004; 2: 1532-1539.
    • (2004) PLOS Biology , vol.2 , pp. 1532-1539
    • Wang, Y.-X.1    Zhang, C.-L.2    Yu, R.T.3
  • 88
    • 45549089279 scopus 로고    scopus 로고
    • High fat diets cause insulin resistance despite an increase in muscle mitochondria
    • Hancock CR, Han D-H, Chen M, et al. High fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci USA 2008; 105: 7815-7820.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 7815-7820
    • Hancock, C.R.1    Han, D.-H.2    Chen, M.3
  • 89
    • 34547505089 scopus 로고    scopus 로고
    • Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle
    • Garcia-Roves PM, Huss JM, Han D-H, et al. Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle. Proc Natl Acad Sci USA 2007; 104: 10709-10713.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 10709-10713
    • Garcia-Roves, P.M.1    Huss, J.M.2    Han, D.-H.3
  • 90
    • 34547588219 scopus 로고    scopus 로고
    • Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle. Evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents
    • Turner N, Bruce CR, Beale SM, et al. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle. Evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes 2007; 56: 2085-2092.
    • (2007) Diabetes , vol.56 , pp. 2085-2092
    • Turner, N.1    Bruce, C.R.2    Beale, S.M.3
  • 91
    • 39149135842 scopus 로고    scopus 로고
    • Mitochondrial function, content and ROS production in rat skeletal muscle: Effect of high-fat feeding
    • Hoeks J, Briede JJ, de Vogel J, et al. Mitochondrial function, content and ROS production in rat skeletal muscle: Effect of high-fat feeding. FEBS Letts 2008; 582: 510-516.
    • (2008) FEBS Letts , vol.582 , pp. 510-516
    • Hoeks, J.1    Briede, J.J.2    De Vogel, J.3
  • 92
    • 33845399894 scopus 로고    scopus 로고
    • Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α
    • Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 2006; 127: 1109-1122.
    • (2006) Cell , vol.127 , pp. 1109-1122
    • Lagouge, M.1    Argmann, C.2    Gerhart-Hines, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.