-
1
-
-
0014198263
-
2 uptake and respiratory enzyme activity in skeletal muscle
-
2 uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 1967; 242: 2278-2282.
-
(1967)
J Biol Chem
, vol.242
, pp. 2278-2282
-
-
Holloszy, J.O.1
-
2
-
-
0015158588
-
Adaptation of muscle to exercise. Increase in levels of palmityl CoA synthetase, and in the capacity to oxidize fatty acids
-
Mole PA, Oscai LB, Holloszy JO. Adaptation of muscle to exercise. Increase in levels of palmityl CoA synthetase, and in the capacity to oxidize fatty acids. J Clin Invest 1971; 50: 2323-2330.
-
(1971)
J Clin Invest
, vol.50
, pp. 2323-2330
-
-
Mole, P.A.1
Oscai, L.B.2
Holloszy, J.O.3
-
3
-
-
0016281582
-
Enzymes involved in ketone utilization in different types of muscle: Adaptation to exercise
-
Winder WW, Baldwin KM, Holloszy JO. Enzymes involved in ketone utilization in different types of muscle: Adaptation to exercise. Eur J Biochem 1974; 47: 461-467.
-
(1974)
Eur J Biochem
, vol.47
, pp. 461-467
-
-
Winder, W.W.1
Baldwin, K.M.2
Holloszy, J.O.3
-
4
-
-
0014968409
-
Mitochondrial citric acid cycle and related enzymes: Adaptive response to exercise
-
Holloszy JO, Oscai LB, Don IJ, Mole PA. Mitochondrial citric acid cycle and related enzymes: Adaptive response to exercise. Biochem Biophys Res Commun 1970; 40: 1368-1373.
-
(1970)
Biochem Biophys Res Commun
, vol.40
, pp. 1368-1373
-
-
Holloszy, J.O.1
Oscai, L.B.2
Don, I.J.3
Mole, P.A.4
-
5
-
-
0015240345
-
Biochemical adaptations in muscle II. Response of mitochondrial ATPase, creatine phosphokinase, and adenylate kinase activities in skeletal muscle to exercise
-
Oscai LB, Holloszy JO. Biochemical adaptations in muscle II. Response of mitochondrial ATPase, creatine phosphokinase, and adenylate kinase activities in skeletal muscle to exercise. J Biol Chem 1971; 246: 6968-6972.
-
(1971)
J Biol Chem
, vol.246
, pp. 6968-6972
-
-
Oscai, L.B.1
Holloszy, J.O.2
-
6
-
-
0000107989
-
Muscle plasticity: Energy demanding and supply processes
-
LB Lowell , JT Shepherd (eds). New York: Oxford University Press
-
Booth FW, Baldwin KM. Muscle plasticity: energy demanding and supply processes. In: Handbook of Physiology, Section 12, Exercise Regulation and Integration of Multiple Systems, LB Lowell , JT Shepherd (eds). New York: Oxford University Press, 1997, pp. 1075-1123.
-
(1997)
Handbook of Physiology, Section 12, Exercise Regulation and Integration of Multiple Systems
, pp. 1075-1123
-
-
Booth, F.W.1
Baldwin, K.M.2
-
7
-
-
0035112481
-
Plasticity in skeletal, cardiac and smooth muscle. Invited Review: Contractile activity-induced mitochondrial biogenesis in skeletal muscle
-
Hood DA. Plasticity in skeletal, cardiac and smooth muscle. Invited Review: Contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 2001; 90: 1137-1157.
-
(2001)
J Appl Physiol
, vol.90
, pp. 1137-1157
-
-
Hood, D.A.1
-
8
-
-
0002887220
-
Skeletal muscle adaptability: Significance for metabolism and performance
-
Saltin B, Gollnick PD. Skeletal muscle adaptability: significance for metabolism and performance. In: Handbook of Physiology, Section 10, 1983, pp. 555-631.
-
(1983)
Handbook of Physiology, Section 10
, pp. 555-631
-
-
Saltin, B.1
Gollnick, P.D.2
-
9
-
-
0015535972
-
Effect of training on enzyme activity and fiber composition of human skeletal muscle
-
Gollnick PD, Armstrong RB, Saltin B, Saubert CW, IV, Sembrowich WL, Shepherd RE. Effect of training on enzyme activity and fiber composition of human skeletal muscle. J Appl Physiol 1973; 34: 107-111.
-
(1973)
J Appl Physiol
, vol.34
, pp. 107-111
-
-
Gollnick, P.D.1
Armstrong, R.B.2
Saltin, B.3
Saubert IV, C.W.4
Sembrowich, W.L.5
Shepherd, R.E.6
-
10
-
-
0030054370
-
Mitochondrial enzymes increase in muscle in response to 7-10 days of cycle exercise
-
Spina RJ, Chi MMY, Hopkins MG, Nemeth PM, Lowry OH, Holloszy JO. Mitochondrial enzymes increase in muscle in response to 7-10 days of cycle exercise. J Appl Physiol 1996; 80: 2250-2254. (Pubitemid 26243809)
-
(1996)
Journal of Applied Physiology
, vol.80
, Issue.6
, pp. 2250-2254
-
-
Spina, R.J.1
Chi, M.M.-Y.2
Hopkins, M.G.3
Nemeth, P.M.4
Lowry, O.H.5
Holloszy, J.O.6
-
11
-
-
0015865749
-
The ultrastructure of normal human skeletal muscle. a morphometric analysis on untrained men, women and well-trained orienteers
-
Hoppeler H, Luthi P, Claassen H, Weibel ER, Howald H. The ultrastructure of normal human skeletal muscle. A morphometric analysis on untrained men, women and well-trained orienteers. Pflugers Arch 1973; 344: 217-232.
-
(1973)
Pflugers Arch
, vol.344
, pp. 217-232
-
-
Hoppeler, H.1
Luthi, P.2
Claassen, H.3
Weibel, E.R.4
Howald, H.5
-
12
-
-
0015288981
-
Respiratory capacity of white, red, and intermediate muscle: Adaptive response to exercise
-
Baldwin KM, Klinkerfuss GH, Terjung RL, Mole PA, Holloszy JO. Respiratory capacity of white, red, and intermediate muscle: Adaptive response to exercise. Am J Physiol 1972; 222: 373-378.
-
(1972)
Am J Physiol
, vol.222
, pp. 373-378
-
-
Baldwin, K.M.1
Klinkerfuss, G.H.2
Terjung, R.L.3
Mole, P.A.4
Holloszy, J.O.5
-
13
-
-
0023232750
-
Energy metabolism in contracting rat skeletal muscle: Adaptation to exercise training
-
Constable SH, Favier RJ, McLane JA, Fell RD, Chen M, Holloszy JO. Energy metabolism in contracting rat skeletal muscle: adaptation to exercise training. Am J Physiol 1987; 253: C316-C322. (Pubitemid 17155163)
-
(1987)
American Journal of Physiology - Cell Physiology
, vol.253
, Issue.2
-
-
Constable, S.H.1
Favier, R.J.2
McLane, J.A.3
Fell, R.D.4
Chen, M.5
Holloszy, J.O.6
-
14
-
-
0023645086
-
Influence of mitochondrial content on the sensitivity of respiratory control
-
Dudley GA, Tullson PC, Terjung RL. Influence of mitochondrial content on the sensitivity of respiratory control. J Biol Chem 1987; 262: 9109-9114.
-
(1987)
J Biol Chem
, vol.262
, pp. 9109-9114
-
-
Dudley, G.A.1
Tullson, P.C.2
Terjung, R.L.3
-
15
-
-
0025249970
-
Endurance training decreases plasma glucose turnover and oxidation during moderate-intensity exercise in men
-
Coggan AR, Kohrt WM, Spina RJ, Bier DM, Holloszy JO. Endurance training decreases plasma glucose turnover and oxidation during moderate-intensity exercise in men. J Appl Physiol 1990; 68: 990-996. (Pubitemid 20136423)
-
(1990)
Journal of Applied Physiology
, vol.68
, Issue.3
, pp. 990-996
-
-
Coggan, A.R.1
Kohrt, W.M.2
Spina, R.J.3
Bier, D.M.4
Holloszy, J.O.5
-
16
-
-
0022234140
-
Muscle triglyceride utilization during exercise: Effect of training
-
Hurley BF, Nemeth PM, Martin WH, III, Hagberg JM, Dalsky GP, Holloszy JO. Muscle triglyceride utilization during exercise: Effect of training. J Appl Physiol 1986; 60: 562-567.
-
(1986)
J Appl Physiol
, vol.60
, pp. 562-567
-
-
Hurley, B.F.1
Nemeth, P.M.2
Martin III, W.H.3
Hagberg, J.M.4
Dalsky, G.P.5
Holloszy, J.O.6
-
17
-
-
0027364841
-
Effect of endurance-training on plasma free fatty acid turnover and oxidation during exercise
-
Martin WH, Dalsky GP, Hurley BF, et al. Effect of endurance-training on plasma free fatty acid turnover and oxidation during exercise. Am J Physiol 1993; 265: E708-E714.
-
(1993)
Am J Physiol
, vol.265
-
-
Martin, W.H.1
Dalsky, G.P.2
Hurley, B.F.3
-
18
-
-
0019979177
-
Regulation of glycogenolysis in human skeletal muscle at rest and during exercise
-
Chasiotis D, Sahlin K, Hultman E. Regulation of glycogenolysis in human skeletal muscle at rest and during exercise. J Appl Physiol 1982; 53: 708-715.
-
(1982)
J Appl Physiol
, vol.53
, pp. 708-715
-
-
Chasiotis, D.1
Sahlin, K.2
Hultman, E.3
-
19
-
-
0024799078
-
Regulation of glycogenolysis in human skeletal muscle
-
Ren J-M, Hultman E. Regulation of glycogenolysis in human skeletal muscle. J Appl Physiol 1989; 67: 2243-2248. (Pubitemid 20032218)
-
(1989)
Journal of Applied Physiology
, vol.67
, Issue.6
, pp. 2243-2248
-
-
Ren, J.-M.1
Hultman, E.2
-
22
-
-
0025313512
-
NRF-1: A trans-activator of nuclear-encoded respiratory genes in animal cells
-
Evans MJ, Scarpulla RC. NRF-1: a trans-activator of nuclear-encoded respiratory genes in animal cells. Genes Dev 1990; 4: 1023-1034. (Pubitemid 20188977)
-
(1990)
Genes and Development
, vol.4
, Issue.6
, pp. 1023-1034
-
-
Evans, M.J.1
Scarpulla, R.C.2
-
23
-
-
0027256435
-
Identity of GABP with NRF-2, a multisubunit activator of cytochrome oxidase expression, reveals a cellular role for and ETS domain activator of viral promoters
-
Virbasius JV, Virbasius CA, Scarpulla RC. Identity of GABP with NRF-2, a multisubunit activator of cytochrome oxidase expression, reveals a cellular role for an ETS domain activator of viral promoters. Genes Dev 1993; 7: 380-392. (Pubitemid 23139232)
-
(1993)
Genes and Development
, vol.7
, Issue.3
, pp. 380-392
-
-
Virbasius, J.V.1
Virbasius, C.A.2
Scarpulla, R.C.3
-
24
-
-
0028011017
-
Activation of the human mitochondrial transcription factor a gene by nuclear respiratory factors: A potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis
-
Virbasius JV, Scarpulla RC. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: A potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci USA 1994; 91: 1309-1313.
-
(1994)
Proc Natl Acad Sci USA
, vol.91
, pp. 1309-1313
-
-
Virbasius, J.V.1
Scarpulla, R.C.2
-
25
-
-
0037029049
-
Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells
-
DOI 10.1016/S0378-1119(01)00809-5, PII S0378111901008095
-
Scarpulla RC. Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 2002; 286: 81-89. (Pubitemid 34273864)
-
(2002)
Gene
, vol.286
, Issue.1
, pp. 81-89
-
-
Scarpulla, R.C.1
-
26
-
-
0028033268
-
The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression
-
DOI 10.1073/pnas.91.23.11012
-
Gulick T, Cresci S, Caira T, Moore DD, Kelly DP. The peroxisome proliferator activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc Natl Acad Sci USA 1994; 91: 11012-11016. (Pubitemid 24349615)
-
(1994)
Proceedings of the National Academy of Sciences of the United States of America
, vol.91
, Issue.23
, pp. 11012-11016
-
-
Gulick, T.1
Cresci, S.2
Caira, T.3
Moore, D.D.4
Kelly, D.P.5
-
27
-
-
0037174798
-
Peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and -γ
-
Huss JM, Kopp RP, Kelly DP. Peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and -γ. J Biol Chem 2002; 277: 40265-40274.
-
(2002)
J Biol Chem
, vol.277
, pp. 40265-40274
-
-
Huss, J.M.1
Kopp, R.P.2
Kelly, D.P.3
-
28
-
-
0033977890
-
The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes
-
DOI 10.1128/MCB.20.5.1868-1876.2000
-
Vega R, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 2000; 20: 1868-1876. (Pubitemid 30100203)
-
(2000)
Molecular and Cellular Biology
, vol.20
, Issue.5
, pp. 1868-1876
-
-
Vega, R.B.1
Huss, J.M.2
Kelly, D.P.3
-
29
-
-
0038660688
-
The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor α (ERRα)
-
DOI 10.1074/jbc.M212923200
-
Schreiber SN, Knutti D, Brogli K, Uhlmann T, Kralli A. The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor α (ERRα). J Biol Chem 2003; 278: 9013-9018. (Pubitemid 36800379)
-
(2003)
Journal of Biological Chemistry
, vol.278
, Issue.11
, pp. 9013-9018
-
-
Schreiber, S.N.1
Knutti, D.2
Brogli, K.3
Uhlmann, T.4
Kralli, A.5
-
30
-
-
0033538473
-
Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
-
Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999; 98: 115-124.
-
(1999)
Cell
, vol.98
, pp. 115-124
-
-
Wu, Z.1
Puigserver, P.2
Andersson, U.3
-
31
-
-
0033803048
-
Peroxisome proliferator-activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis
-
Lehman JJ, Barger PM, Kovacs A, Saffitz J, Medeiros DM, Kelly DP. Peroxisome proliferator-activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 2000; 106: 847-856.
-
(2000)
J Clin Invest
, vol.106
, pp. 847-856
-
-
Lehman, J.J.1
Barger, P.M.2
Kovacs, A.3
Saffitz, J.4
Medeiros, D.M.5
Kelly, D.P.6
-
32
-
-
0037102256
-
Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres
-
Lin J, Wu H, Tarr PT, et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 2002; 418: 797-801.
-
(2002)
Nature
, vol.418
, pp. 797-801
-
-
Lin, J.1
Wu, H.2
Tarr, P.T.3
-
33
-
-
37549025047
-
A role for the transcriptional coactivator PGC-1α in muscle refueling
-
Wende AR, Schaeffer PJ, Parker GJ, et al. A role for the transcriptional coactivator PGC-1α in muscle refueling. J Biol Chem 2007; 282: 36642-36651.
-
(2007)
J Biol Chem
, vol.282
, pp. 36642-36651
-
-
Wende, A.R.1
Schaeffer, P.J.2
Parker, G.J.3
-
34
-
-
24144463983
-
Metabolic control through the PGC-1 family of transcription coactivators
-
DOI 10.1016/j.cmet.2005.05.004, PII S1550413105001427
-
Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metabolism 2005; 1: 361-370. (Pubitemid 43960626)
-
(2005)
Cell Metabolism
, vol.1
, Issue.6
, pp. 361-370
-
-
Lin, J.1
Handschin, C.2
Spiegelman, B.M.3
-
35
-
-
0036903174
-
Adaptations of skeletal muscle to exercise: Rapid increase in the transcriptional coactivator PGC-1
-
Baar K, Wende AR, Jones TE, et al. Adaptations of skeletal muscle to exercise: Rapid increase in the transcriptional coactivator PGC-1. FASEB J 2002; 16: 1879-1886.
-
(2002)
FASEB J
, vol.16
, pp. 1879-1886
-
-
Baar, K.1
Wende, A.R.2
Jones, T.E.3
-
36
-
-
0034596268
-
CDNA cloning and mRNA analysis of PGC-1 in epitrochlearis muscle in swimming-exercised rats
-
DOI 10.1006/bbrc.2000.3134
-
Goto M, Terada S, Kato M, et al. cDNA cloning and mRNA analysis of PGC-1 in epitrochlearis muscle in swimming-exercised rats. Biochem Biophys Res Commun 2000; 274: 350-354. (Pubitemid 30614322)
-
(2000)
Biochemical and Biophysical Research Communications
, vol.274
, Issue.2
, pp. 350-354
-
-
Goto, M.1
Terada, S.2
Kato, M.3
Katoh, M.4
Yokozeki, T.5
Tabata, I.6
Shimokawa, T.7
-
37
-
-
0036386911
-
Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle
-
Terada S, Goto M, Kato M, Kawanaka K, Shimokawa T, Tabata I. Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochem Biophys Res Commun 2002; 296: 350-354.
-
(2002)
Biochem Biophys Res Commun
, vol.296
, pp. 350-354
-
-
Terada, S.1
Goto, M.2
Kato, M.3
Kawanaka, K.4
Shimokawa, T.5
Tabata, I.6
-
38
-
-
0037322888
-
Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle
-
DOI 10.1113/jphysiol.2002.034850
-
Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J Physiol 2003; 546: 851-858. (Pubitemid 36204518)
-
(2003)
Journal of Physiology
, vol.546
, Issue.3
, pp. 851-858
-
-
Pilegaard, H.1
Saltin, B.2
Neufer, D.P.3
-
39
-
-
0347993714
-
PGC-1α mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle
-
DOI 10.1152/japplphysiol.00765.2003
-
Norrbom J, Sundberg CJ, Ameln H, Kraus WE, Jansson E, Gustafsson T. PGC-1α mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. J Appl Physiol 2004; 96: 189-194. (Pubitemid 38032000)
-
(2004)
Journal of Applied Physiology
, vol.96
, Issue.1
, pp. 189-194
-
-
Norrbom, J.1
Sundberg, C.J.2
Ameln, H.3
Kraus, W.E.4
Jansson, E.5
Gustafsson, T.6
-
40
-
-
0038587678
-
PPARγ coactivator-1α expression during thyroid hormone- And contractile activity-induced mitochondrial adaptations
-
Irrcher I, Adhihetty PJ, Sheehan T, Joseph A-M, Hood DA. PPARγ coactivator-1α expression during thyroid hormone- and contractile activity-induced mitochondrial adaptations. Am J Physiol 2003; 284: C1669-C1677. (Pubitemid 36583408)
-
(2003)
American Journal of Physiology - Cell Physiology
, vol.284
, Issue.6
-
-
Irrcher, I.1
Adhihetty, P.J.2
Sheehan, T.3
Joseph, A.-M.4
Hood, D.A.5
-
41
-
-
33846992686
-
Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1α expression
-
DOI 10.1074/jbc.M606116200
-
Wright DC, Han D-H, Garcia-Roves PM, Geiger PC, Jones TE, Holloszy JO. Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1α expression. J Biol Chem 2007; 282: 194-199. (Pubitemid 47076618)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.1
, pp. 194-199
-
-
Wright, D.C.1
Han, D.-H.2
Garcia-Roves, P.M.3
Geiger, P.C.4
Jones, T.E.5
Holloszy, J.O.6
-
42
-
-
2342477730
-
Erra and Gabpa/b specify PGC-1α-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle
-
Mootha V, Handschin C, Arlow D, et al. Erra and Gabpa/b specify PGC-1α-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci USA 2004; 101: 6570-6575.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 6570-6575
-
-
Mootha, V.1
Handschin, C.2
Arlow, D.3
-
43
-
-
18244399631
-
Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1
-
Puigserver P, Rhee J, Lin J, et al. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. Mol Cell 2001; 8: 971-982.
-
(2001)
Mol Cell
, vol.8
, pp. 971-982
-
-
Puigserver, P.1
Rhee, J.2
Lin, J.3
-
46
-
-
3543054528
-
Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle
-
Widegren U, Jiang XJ, Krook A, et al. Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle. FASEB J 1998; 12: 1379-1389.
-
(1998)
FASEB J
, vol.12
, pp. 1379-1389
-
-
Widegren, U.1
Jiang, X.J.2
Krook, A.3
-
47
-
-
21244477127
-
Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway
-
Akimoto T, Pohnert SC, Li P, et al. Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem 2005; 280: 19587-19593.
-
(2005)
J Biol Chem
, vol.280
, pp. 19587-19593
-
-
Akimoto, T.1
Pohnert, S.C.2
Li, P.3
-
48
-
-
1642293248
-
P38 Mitogen-Activated Protein Kinase Is the Central Regulator of Cyclic AMP-Dependent Transcription of the Brown Fat Uncoupling Protein 1 Gene
-
DOI 10.1128/MCB.24.7.3057-3067.2004
-
Cao W, Daniel KW, Robidoux J, et al. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol Cell Biol 2004; 24: 3057-3067. (Pubitemid 38381292)
-
(2004)
Molecular and Cellular Biology
, vol.24
, Issue.7
, pp. 3057-3067
-
-
Cao, W.1
Daniel, K.W.2
Robidoux, J.3
Puigserver, P.4
Medvedev, A.V.5
Bai, X.6
Floering, L.M.7
Spiegelman, B.M.8
Collins, S.9
-
49
-
-
0037452677
-
Regulation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and mitochondrial function by MEF2 and HDAC5
-
DOI 10.1073/pnas.0337639100
-
Czubryt MP, McAnnally J, Fishman GI, Olson EN. Regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1alpha) and mitochondrial function by MEF2 and HDAC5. Proc Natl Acad Sci USA 2003; 100: 1711-1716. (Pubitemid 36254513)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.4
, pp. 1711-1716
-
-
Czubryt, M.P.1
McAnally, J.2
Fishman, G.I.3
Olson, E.N.4
-
50
-
-
0038810035
-
An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1α expression in muscle
-
DOI 10.1073/pnas.1232352100
-
Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM. An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1α expression in muscle. Proc Natl Acad Sci USA 2003; 100: 7111-7116. (Pubitemid 36706401)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.12
, pp. 7111-7116
-
-
Handschin, C.1
Rhee, J.2
Lin, J.3
Tarr, P.T.4
Spiegelman, B.M.5
-
51
-
-
52749095883
-
Functional interaction of regulatory factors with the Pgc-1α promoter in response to exercise by in vivo imaging
-
DOI 10.1152/ajpcell.00104.2008
-
Akimoto T, Li P, Yan Z. Functional interaction of regulatory factors with the Pgc-1α promoter in response to exercise by in vivo imaging. Am J Physiol Cell Physiol 2008; 295: C288-C292. (Pubitemid 352755804)
-
(2008)
American Journal of Physiology - Cell Physiology
, vol.295
, Issue.1
-
-
Akimoto, T.1
Li, P.2
Yan, Z.3
-
52
-
-
0025094347
-
Effects of exercise-training on insulin-regulatable glucose-transporter protein levels in rat skeletal muscle
-
Rodnick KJ, Holloszy JO, Mondon CE, James DE. Effects of exercise-training on insulin-regulatable glucose-transporter protein levels in rat skeletal muscle. Diabetes 1990; 39: 1425-1429.
-
(1990)
Diabetes
, vol.39
, pp. 1425-1429
-
-
Rodnick, K.J.1
Holloszy, J.O.2
Mondon, C.E.3
James, D.E.4
-
53
-
-
0025614980
-
Effect of endurance-training on glucose transport capacity and glucose transporter expression in rat skeletal muscle
-
Ploug T, Stallknecht BM, Pedersen O, et al. Effect of endurance-training on glucose transport capacity and glucose transporter expression in rat skeletal muscle. Am J Physiol 1990; 259: E778-E786.
-
(1990)
Am J Physiol
, vol.259
-
-
Ploug, T.1
Stallknecht, B.M.2
Pedersen, O.3
-
54
-
-
0025299343
-
Exercise training increases glucose transporter protein GLUT-4 in skeletal muscle of obese Zucker (fa/fa) rats
-
DOI 10.1016/0014-5793(90)80960-Q
-
Friedman JE, Sherman WM, Reed MJ, Elton CW, Dohm GL. Exercise-training increases glucose transporter protein GLUT4 in skeletal muscle of obese Zucker (fa/fa) rats. FEBS Lett 1990; 268: 13-16. (Pubitemid 20233818)
-
(1990)
FEBS Letters
, vol.268
, Issue.1
, pp. 13-16
-
-
Friedman, J.E.1
Sherman, W.M.2
Reed, M.J.3
Elton, C.W.4
Dohm, G.L.5
-
55
-
-
0026803256
-
Glucose transporter number, function, and subcellular distribution in rat skeletal muscle after exercise training
-
Goodyear LJ, Hirshman MF, Valyou PM, Horton ES. Glucose transporter number, function, and subcellular distribution in rat skeletal muscle after exercise training. Diabetes 1992; 41: 1091-1099.
-
(1992)
Diabetes
, vol.41
, pp. 1091-1099
-
-
Goodyear, L.J.1
Hirshman, M.F.2
Valyou, P.M.3
Horton, E.S.4
-
56
-
-
28544438180
-
PGC-1α coactivates PDK4 gene expression via the orphan nuclear receptor ERRα: A mechanism for transcriptional control of muscle glucose metabolism
-
DOI 10.1128/MCB.25.24.10684-10694.2005
-
Wende AR, Huss JM, Schaeffer PJ, Giguere V, Kelly DP. PGC-1α coactivates PDK4 gene expression via the orphan nuclear receptor ERRα: a mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol 2005; 25: 10684-10694. (Pubitemid 41747115)
-
(2005)
Molecular and Cellular Biology
, vol.25
, Issue.24
, pp. 10684-10694
-
-
Wende, A.R.1
Huss, J.M.2
Schaeffer, P.J.3
Giguere, V.4
Kelly, D.P.5
-
58
-
-
0026588689
-
Exercise-training, glucose transporters and glucose transport in rat skeletal muscles
-
Rodnick KJ, Henriksen EJ, James DE, Holloszy JO. Exercise-training, glucose transporters and glucose transport in rat skeletal muscles. Am J Physiol 1992; 262: C9-C14.
-
(1992)
Am J Physiol
, vol.262
-
-
Rodnick, K.J.1
Henriksen, E.J.2
James, D.E.3
Holloszy, J.O.4
-
59
-
-
0028287972
-
Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle
-
Ren J-M, Semenkovich CF, Gulve EA, Gao J, Holloszy JO. Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle. J Biol Chem 1994; 269: 14396-14401. (Pubitemid 24193989)
-
(1994)
Journal of Biological Chemistry
, vol.269
, Issue.20
, pp. 14396-14401
-
-
Ren, J.-M.1
Semenkovich, C.F.2
Gulve, E.A.3
Gao, J.4
Holloszy, J.O.5
-
60
-
-
0034717280
-
The MEF2A isoform is required for striated muscle-specific expression of the insulin-responsive GLUT4 glucose transporter
-
DOI 10.1074/jbc.M910259199
-
Mora S, Pessin JE. The MEF2A isoform is required for striated muscle-specific expression of the insulin-responsive GLUT4 glucose transporter. J Biol Chem 2000; 275: 16323-16328. (Pubitemid 30366948)
-
(2000)
Journal of Biological Chemistry
, vol.275
, Issue.21
, pp. 16323-16328
-
-
Mora, S.1
Pessin, J.E.2
-
61
-
-
33644910891
-
Exercise increases MEF2- And GEF DNA-binding activity in human skeletal muscle
-
DOI 10.1096/fj.05-4671fje
-
McGee J, Sparling D, Olson AL, Hargreaves M. Exercise increases MEF2- and GEF DNA-binding activity in human skeletal muscle. FASEB J 2006; 20: 348-349. (Pubitemid 46671167)
-
(2006)
FASEB Journal
, vol.20
, Issue.2
, pp. 348-349
-
-
McGee, S.L.1
Sparling, D.2
Olson, A.-L.3
Hargreaves, M.4
-
62
-
-
0042415526
-
Skeletal muscle overexpression of nuclear respiratory factor 1 increases glucose transport capacity
-
Baar K, Song Z, Semenkovich CF, et al. Skeletal muscle overexpression of nuclear respiratory factor 1 increases glucose transport capacity. FASEB J 2003; 17: 1666-1673.
-
(2003)
FASEB J
, vol.17
, pp. 1666-1673
-
-
Baar, K.1
Song, Z.2
Semenkovich, C.F.3
-
63
-
-
45549087482
-
Nuclear respiratory factor 1 controls myocyte enhancer factor 2A transcription to provide a mechanism for coordinate expression of respiratory chain subunits
-
Ramachandran B, Yu G, Gulick T. Nuclear respiratory factor 1 controls myocyte enhancer factor 2A transcription to provide a mechanism for coordinate expression of respiratory chain subunits. J Biol Chem 2008; 283: 11935-11946.
-
(2008)
J Biol Chem
, vol.283
, pp. 11935-11946
-
-
Ramachandran, B.1
Yu, G.2
Gulick, T.3
-
64
-
-
0032802835
-
Effects of endurance exercise training on muscle glycogen accumulation in humans
-
Greiwe JS, Hickner RC, Hansen PA, Racette SB, Chen MM, Holloszy JO. Effects of endurance exercise training on muscle glycogen accumulation in humans. J Appl Physiol 1999; 87: 222-226. (Pubitemid 29330684)
-
(1999)
Journal of Applied Physiology
, vol.87
, Issue.1
, pp. 222-226
-
-
Greiwe, J.S.1
Hickner, R.C.2
Hansen, P.A.3
Racette, S.B.4
Chen, M.M.5
Holloszy, J.O.6
-
65
-
-
0030865910
-
Muscle glycogen accumulation after endurance exercise in trained and untrained individuals
-
Hickner RC, Fisher JS, Hansen PA, et al. Muscle glycogen accumulation after endurance exercise in trained and untrained individuals. J Appl Physiol 1997; 83: 897-903.
-
(1997)
J Appl Physiol
, vol.83
, pp. 897-903
-
-
Hickner, R.C.1
Fisher, J.S.2
Hansen, P.A.3
-
66
-
-
0031046804
-
Effect of endurance exercise training on muscle glycogen supercompensation in rats
-
Nakatani A, Han D-H, Hansen PA, et al. Effect of endurance exercise training on muscle glycogen supercompensation in rats. J Appl Physiol 1997; 82: 711-715.
-
(1997)
J Appl Physiol
, vol.82
, pp. 711-715
-
-
Nakatani, A.1
Han, D.-H.2
Hansen, P.A.3
-
67
-
-
0141839096
-
Prevention of glycogen supercompensation prolongs the increase in muscle GLUT4 after exercise
-
Garcia-Roves PM, Han D-H, Song Z, Jones TE, Hucker KA, Holloszy JO. Prevention of glycogen supercompensation prolongs the increase in muscle GLUT4 after exercise. Am J Physiol 2003; 285: E729-E736. (Pubitemid 37176423)
-
(2003)
American Journal of Physiology - Endocrinology and Metabolism
, vol.285
, Issue.4
-
-
Garcia-Roves, P.M.1
Han, D.-H.2
Song, Z.3
Jones, T.E.4
Hucker, K.A.5
Holloszy, J.O.6
-
68
-
-
0033949848
-
Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle
-
Winder WW, Holmes BF, Rudink DS, Jensen EB, Chen M, Holloszy JO. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J Appl Physiol 2000; 88: 2219-2226. (Pubitemid 30453931)
-
(2000)
Journal of Applied Physiology
, vol.88
, Issue.6
, pp. 2219-2226
-
-
Winder, W.W.1
Holmes, B.F.2
Rubink, D.S.3
Jensen, E.B.4
Chen, M.5
Holloszy, J.O.6
-
69
-
-
33846012164
-
Role of AMPKα2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle
-
Jorgensen SB, Treebak JT, Viollet B, et al. Role of AMPKα2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle. Am J Physiol 2007; 292: E331-E339.
-
(2007)
Am J Physiol
, vol.292
-
-
Jorgensen, S.B.1
Treebak, J.T.2
Viollet, B.3
-
70
-
-
0032704115
-
Chronic activation of 5′-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle
-
Holmes BF, Kurth-Kraczek EJ, Winder WW. Chronic activation of 5′-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J Appl Physiol 1999; 87: 1990-1995.
-
(1999)
J Appl Physiol
, vol.87
, pp. 1990-1995
-
-
Holmes, B.F.1
Kurth-Kraczek, E.J.2
Winder, W.W.3
-
71
-
-
0034014002
-
Increased expression of GLUT-4 and hexokinase in rat epitrochlearis muscles exposed to AICAR in vitro
-
Ojuka EO, Nolte LA, Holloszy JO. Increased expression of GLUT-4 and hexokinase in rat epitrochlearis muscles exposed to AICAR in vitro. J Appl Physiol 2000; 88: 1072-1075. (Pubitemid 30154913)
-
(2000)
Journal of Applied Physiology
, vol.88
, Issue.3
, pp. 1072-1075
-
-
Ojuka, E.O.1
Nolte, L.A.2
Holloszy, J.O.3
-
73
-
-
33644695373
-
Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein kinase
-
Holmes BF, Sparling DP, Olson AL, Winder WW, Dohm GL. Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein kinase. Am J Physiol 2008; 289: E1071-E1076.
-
(2008)
Am J Physiol
, vol.289
-
-
Holmes, B.F.1
Sparling, D.P.2
Olson, A.L.3
Winder, W.W.4
Dohm, G.L.5
-
74
-
-
42449161465
-
AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5
-
McGee SL, van Denderen BJ, Howlett KF, et al. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 2008; 57: 860-867.
-
(2008)
Diabetes
, vol.57
, pp. 860-867
-
-
McGee, S.L.1
Van Denderen, B.J.2
Howlett, K.F.3
-
75
-
-
34547545892
-
AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α
-
DOI 10.1073/pnas.0705070104
-
Jager S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc Natl Acad Sci USA 2007; 104: 12017-12022. (Pubitemid 47185622)
-
(2007)
Proceedings of the National Academy of Sciences of the United States of America
, vol.104
, Issue.29
, pp. 12017-12022
-
-
Jaer, S.1
Handschin, C.2
St-Pierre, J.3
Spiegelman, B.M.4
-
78
-
-
1842645231
-
Calcium-regulated changes in mitochondrial phenotype in skeletal muscle cells
-
DOI 10.1152/ajpcell.00418.2003
-
Freyssenet D, Irrcher I, Connor MK, Di Carlo M, Hood DA. Calcium-regulated changes in mitochondrial phenotype in skeletal muscle cells. Am J Physiol 2004; 286: C1053-C1061. (Pubitemid 38506920)
-
(2004)
American Journal of Physiology - Cell Physiology
, vol.286
, Issue.5
-
-
Freyssenet, D.1
Irrcher, I.2
Connor, M.K.3
Di Carlo, M.4
Hood, D.A.5
-
79
-
-
0242582447
-
Skeletal Muscle Reprogramming by Activation of Calcineurin Improves Insulin Action on Metabolic Pathways
-
DOI 10.1074/jbc.M304510200
-
Ryder JW, Bassel-Duby R, Olson EN, Zierath JR. Skeletal muscle reprogramming by activation of calcineurin improves insulin action on metabolic pathways. J Biol Chem 2003; 278: 44298-44304. (Pubitemid 37377175)
-
(2003)
Journal of Biological Chemistry
, vol.278
, Issue.45
, pp. 44298-44304
-
-
Ryder, J.W.1
Bassel-Duby, R.2
Olson, E.N.3
Zierath, J.R.4
-
80
-
-
4544355935
-
Calcineurin and calcium/calmoduln-dependent protein kinase activate distinct metabolic gene regulatory programs in cardiac muscle
-
Schaeffer PJ, Wende AR, Magee CJ, et al. Calcineurin and calcium/calmoduln-dependent protein kinase activate distinct metabolic gene regulatory programs in cardiac muscle. J Biol Chem 2004; 279: 39593-39603.
-
(2004)
J Biol Chem
, vol.279
, pp. 39593-39603
-
-
Schaeffer, P.J.1
Wende, A.R.2
Magee, C.J.3
-
81
-
-
0037066459
-
Regulation of mitochondrial biogenesis in skeletal muscle by CaMK
-
Wu H, Kanatous SB, Thurmond FA, et al. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 2002; 296: 349-352.
-
(2002)
Science
, vol.296
, pp. 349-352
-
-
Wu, H.1
Kanatous, S.B.2
Thurmond, F.A.3
-
82
-
-
33847265875
-
Calcineurin regulates skeletal muscle metabolism via coordinated changes in gene expression
-
DOI 10.1074/jbc.M609208200
-
Long YC, Glund S, Garcia-Roves PM, Zierath JR. Calcineurin regulates skeletal muscle metabolism via coordinated changes in gene expression. J Biol Chem 2007; 282: 1607-1614. (Pubitemid 47076703)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.3
, pp. 1607-1614
-
-
Yun, C.L.1
Glund, S.2
Garcia-Roves, P.M.3
Zierath, J.R.4
-
83
-
-
34547092191
-
Calcium induces increases in peroxisome proliferator-activated receptor γ coactivator-1α and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation
-
DOI 10.1074/jbc.M611252200
-
Wright DC, Geiger PC, Han D-H, Jones TE, Holloszy JO. Calcium induces increases in peroxisome proliferator-activated receptor γ coactivator-1α and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J Biol Chem 2007; 282: 18793-18799. (Pubitemid 47100154)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.26
, pp. 18793-18799
-
-
Wright, D.C.1
Geiger, P.C.2
Han, D.-H.3
Jones, T.E.4
Holloszy, J.O.5
-
85
-
-
14644411018
-
Calcineurin does not mediate exercise-induced increase in muscle GLUT4
-
DOI 10.2337/diabetes.54.3.624
-
Garcia-Roves PM, Jones TE, Otani K, Han D-H, Holloszy JO. Calcineurin does not mediate the exercise-induced increase in muscle GLUT4. Diabetes 2005; 54: 624-628. (Pubitemid 40322063)
-
(2005)
Diabetes
, vol.54
, Issue.3
, pp. 624-628
-
-
Garcia-Roves, P.M.1
Jones, T.E.2
Otani, K.3
Han, D.-H.4
Holloszy, J.O.5
-
86
-
-
0642303113
-
Peroxisome proliferator-activated receptor d controls muscle development and oxydative capability
-
Luquet S, Lopez-Soriano J, Holst D, et al. Peroxisome proliferator-activated receptor d controls muscle development and oxydative capability. FASEB J 2003; 17: 2299-2301.
-
(2003)
FASEB J
, vol.17
, pp. 2299-2301
-
-
Luquet, S.1
Lopez-Soriano, J.2
Holst, D.3
-
87
-
-
8844276054
-
Regulation of muscle fiber type and running endurance by PPARδ
-
Wang Y-X, Zhang C-L, Yu RT, et al. Regulation of muscle fiber type and running endurance by PPARδ. PLOS Biology 2004; 2: 1532-1539.
-
(2004)
PLOS Biology
, vol.2
, pp. 1532-1539
-
-
Wang, Y.-X.1
Zhang, C.-L.2
Yu, R.T.3
-
88
-
-
45549089279
-
High fat diets cause insulin resistance despite an increase in muscle mitochondria
-
Hancock CR, Han D-H, Chen M, et al. High fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci USA 2008; 105: 7815-7820.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 7815-7820
-
-
Hancock, C.R.1
Han, D.-H.2
Chen, M.3
-
89
-
-
34547505089
-
Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle
-
Garcia-Roves PM, Huss JM, Han D-H, et al. Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle. Proc Natl Acad Sci USA 2007; 104: 10709-10713.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 10709-10713
-
-
Garcia-Roves, P.M.1
Huss, J.M.2
Han, D.-H.3
-
90
-
-
34547588219
-
Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle. Evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents
-
Turner N, Bruce CR, Beale SM, et al. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle. Evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes 2007; 56: 2085-2092.
-
(2007)
Diabetes
, vol.56
, pp. 2085-2092
-
-
Turner, N.1
Bruce, C.R.2
Beale, S.M.3
-
91
-
-
39149135842
-
Mitochondrial function, content and ROS production in rat skeletal muscle: Effect of high-fat feeding
-
Hoeks J, Briede JJ, de Vogel J, et al. Mitochondrial function, content and ROS production in rat skeletal muscle: Effect of high-fat feeding. FEBS Letts 2008; 582: 510-516.
-
(2008)
FEBS Letts
, vol.582
, pp. 510-516
-
-
Hoeks, J.1
Briede, J.J.2
De Vogel, J.3
-
92
-
-
33845399894
-
Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α
-
Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 2006; 127: 1109-1122.
-
(2006)
Cell
, vol.127
, pp. 1109-1122
-
-
Lagouge, M.1
Argmann, C.2
Gerhart-Hines, Z.3
|