메뉴 건너뛰기




Volumn 10, Issue 2, 2009, Pages 177-192

Semantic web for integrated network analysis in biomedicine

Author keywords

Biomedical network analysis; Graph mining; Network biology; Network medicine; Semantic Web

Indexed keywords

ALGORITHM; BIOMEDICINE; CLUSTER ANALYSIS; COMPUTER NETWORK; COMPUTER PREDICTION; CONFERENCE PAPER; DATA EXTRACTION; DATA MINING; HERB DRUG INTERACTION; INFORMATION PROCESSING; INFORMATION RETRIEVAL; INFORMATION SERVICE; INFORMATION SYSTEM; MEDICAL RESEARCH; ONLINE ANALYSIS; SEMANTICS;

EID: 63549097414     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbp002     Document Type: Conference Paper
Times cited : (42)

References (80)
  • 3
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: Understanding the cells functional organization
    • Barabsi AL, Oltvai Z. Network biology: Understanding the cells functional organization. NatRev Genet 2004;5:101-13.
    • (2004) NatRev Genet , vol.5 , pp. 101-113
    • Barabsi, A.L.1    Oltvai, Z.2
  • 4
    • 27944493925 scopus 로고    scopus 로고
    • Scale-free networks in cell biology
    • Albert R. Scale-free networks in cell biology. J Cell Sci 2005; 118:4947-57.
    • (2005) J Cell Sci , vol.118 , pp. 4947-4957
    • Albert, R.1
  • 5
    • 33748798478 scopus 로고    scopus 로고
    • Graph-based methods for analyzing networks in cell biology
    • Aittokallio T, Schwikowski B. Graph-based methods for analyzing networks in cell biology. Brief Bioinform 2006;7: 243-55.
    • (2006) Brief Bioinform , vol.7 , pp. 243-255
    • Aittokallio, T.1    Schwikowski, B.2
  • 6
    • 34547146985 scopus 로고    scopus 로고
    • Network medicine-from obesity to the diseasome
    • Barabasi A-L. Network medicine-from obesity to the diseasome. New Engl J Med 2007;357:404-7.
    • (2007) New Engl J Med , vol.357 , pp. 404-407
    • Barabasi, A.-L.1
  • 7
    • 17244372135 scopus 로고    scopus 로고
    • Putting microarrays in a context: Integrated analysis of diverse biological data
    • Troyanskaya OG. Putting microarrays in a context: Integrated analysis of diverse biological data. Brief Bioinform 2005;6:34-43.
    • (2005) Brief Bioinform , vol.6 , pp. 34-43
    • Troyanskaya, O.G.1
  • 8
    • 1542357674 scopus 로고    scopus 로고
    • Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genome wide data
    • Tanay A, Sharan R, Kupiec M, et al. Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genome wide data. Proc Natl Acad Sci USA 2004;101:2981-6.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 2981-2986
    • Tanay, A.1    Sharan, R.2    Kupiec, M.3
  • 9
    • 1942469444 scopus 로고    scopus 로고
    • Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction
    • Yeger-Lotem E, Sattath S, Kashtan N, et al. Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc Natl Acad Sci USA 2004;101 5934-9.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 5934-5939
    • Yeger-Lotem, E.1    Sattath, S.2    Kashtan, N.3
  • 10
    • 28444475160 scopus 로고    scopus 로고
    • A data integration methodology for systems biology
    • Hwang D, Rust AG, Ramsey S, et al. A data integration methodology for systems biology. Proc Natl Acad Sci USA 2005;102 17296-301.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 17296-17301
    • Hwang, D.1    Rust, A.G.2    Ramsey, S.3
  • 11
    • 12344316947 scopus 로고    scopus 로고
    • A graph-theoretic approach to testing associations between disparate sources of functional genomics data
    • Balasubramanian R, LaFramboise T, Scholtens D, et al. A graph-theoretic approach to testing associations between disparate sources of functional genomics data. Bioinformatics 2004;20 3353-62.
    • (2004) Bioinformatics , vol.20 , pp. 3353-3362
    • Balasubramanian, R.1    LaFramboise, T.2    Scholtens, D.3
  • 13
    • 27244447569 scopus 로고    scopus 로고
    • A life science semantic web: Are we there yet?
    • Neumann EK. A life science semantic web: Are we there yet? Science, STKE 2005;283:22-5.
    • (2005) Science, STKE , vol.283 , pp. 22-25
    • Neumann, E.K.1
  • 15
    • 32944461378 scopus 로고    scopus 로고
    • Applying semantic web technologies to drug safety determination
    • Stephens S, Morales A, Quinlan M. Applying semantic web technologies to drug safety determination. IEEE Intell Syst 2006;21:82-6.
    • (2006) IEEE Intell Syst , vol.21 , pp. 82-86
    • Stephens, S.1    Morales, A.2    Quinlan, M.3
  • 16
    • 33748847737 scopus 로고    scopus 로고
    • The life sciences semantic web is full of creeps!
    • Good BM, Wilkinson MD. The life sciences semantic web is full of creeps! Brief Bioinform 2006;7:275-86.
    • (2006) Brief Bioinform , vol.7 , pp. 275-286
    • Good, B.M.1    Wilkinson, M.D.2
  • 17
    • 34249860439 scopus 로고    scopus 로고
    • Advancing translational research with the semantic web
    • Ruttenberg A, Clark T, Bug W, et al. Advancing translational research with the semantic web. BMC Bioinform 2007;8(Suppl 3):S2.
    • (2007) BMC Bioinform , vol.8 , Issue.SUPPL. 3
    • Ruttenberg, A.1    Clark, T.2    Bug, W.3
  • 18
    • 27144497798 scopus 로고    scopus 로고
    • From XML to RDF: How semantic web technologies will change the design of omic standards
    • Wang X, Gorlitsky R, Almeida JS. From XML to RDF: How semantic web technologies will change the design of omic standards. Nat Biotechnol 2005;23: 1099-103.
    • (2005) Nat Biotechnol , vol.23 , pp. 1099-1103
    • Wang, X.1    Gorlitsky, R.2    Almeida, J.S.3
  • 22
    • 33745790274 scopus 로고    scopus 로고
    • Graph mining: Laws, generators, and algorithms
    • Article
    • Chakrabarti D, Faloutsos C. Graph mining: Laws, generators, and algorithms. ACM Comput Surveys 2006; 38: Article 2.
    • (2006) ACM Comput Surveys , vol.38 , pp. 2
    • Chakrabarti, D.1    Faloutsos, C.2
  • 25
    • 33947319163 scopus 로고    scopus 로고
    • Protein ranking by semi-supervised network propagation
    • Weston J, Kuang R, Leslie C, et al. Protein ranking by semi-supervised network propagation. BMC Bioinform 2006; 7 (Suppl 1):S10.
    • (2006) BMC Bioinform , vol.7 , Issue.SUPPL. 1
    • Weston, J.1    Kuang, R.2    Leslie, C.3
  • 26
    • 27144465224 scopus 로고    scopus 로고
    • Motif-based protein ranking by network propagation
    • Kuang R, Weston J, Noble WS, et al. Motif-based protein ranking by network propagation. Bioinformatics 2005;21: 3711-8.
    • (2005) Bioinformatics , vol.21 , pp. 3711-3718
    • Kuang, R.1    Weston, J.2    Noble, W.S.3
  • 28
    • 24044504447 scopus 로고    scopus 로고
    • Functional essentiality from topology features in metabolic networks: A case study in yeast
    • Palumbo MC, Colosimo A, Giuliani A, et al. Functional essentiality from topology features in metabolic networks: A case study in yeast. FEBS Lett 2005;579:4642.
    • (2005) FEBS Lett , vol.579 , pp. 4642
    • Palumbo, M.C.1    Colosimo, A.2    Giuliani, A.3
  • 41
    • 27744592463 scopus 로고    scopus 로고
    • Information retrieval and knowledge discovery utilising a biomedical semantic web
    • Mukherjea S. Information retrieval and knowledge discovery utilising a biomedical semantic web. Brief Bioinform 2005;6:252-62.
    • (2005) Brief Bioinform , vol.6 , pp. 252-262
    • Mukherjea, S.1
  • 42
    • 33644874819 scopus 로고    scopus 로고
    • From genomics to chemical genomics: New developments in KEGG
    • Kanehisa M, Goto S, Hattori M, et al. From genomics to chemical genomics: New developments in KEGG. Nucleic Acids Res 2006;34 354-7.
    • (2006) Nucleic Acids Res , vol.34 , pp. 354-357
    • Kanehisa, M.1    Goto, S.2    Hattori, M.3
  • 43
    • 27244436714 scopus 로고    scopus 로고
    • Expansion of the Bio-Cyc collection of pathway/ genome databases to 160 genomes
    • Karp PD, Ouzounis CA, Moore-Kochlacs C, et al. Expansion of the Bio-Cyc collection of pathway/ genome databases to 160 genomes. Nucleic Acids Res 2005; 33:6083-9.
    • (2005) Nucleic Acids Res , vol.33 , pp. 6083-6089
    • Karp, P.D.1    Ouzounis, C.A.2    Moore-Kochlacs, C.3
  • 44
  • 45
    • 13444266370 scopus 로고    scopus 로고
    • Online Mendelian Inheritance in Man (OMIM), a knowledge base of human genes and genetic disorders
    • Hamosh A, Scott AF, Amberger JS, et al. Online Mendelian Inheritance in Man (OMIM), a knowledge base of human genes and genetic disorders. Nucleic Acids Res 2005; 33:514-7.
    • (2005) Nucleic Acids Res , vol.33 , pp. 514-517
    • Hamosh, A.1    Scott, A.F.2    Amberger, J.S.3
  • 46
    • 63549104415 scopus 로고
    • Dictionary of Syndromes & Eponymic Diseases
    • 2nd edn
    • Jablonski S. Jablonski's Dictionary of Syndromes & Eponymic Diseases. 2nd edn. Krieger Publishers, 1991.
    • (1991) Krieger Publishers
    • Jablonski's, J.S.1
  • 47
    • 4243148480 scopus 로고    scopus 로고
    • Authoritative sources in a hyperlinked environment
    • Kleinberg JM. Authoritative sources in a hyperlinked environment. J ACM 1999;46:604-32.
    • (1999) J ACM , vol.46 , pp. 604-632
    • Kleinberg, J.M.1
  • 48
    • 23144466440 scopus 로고    scopus 로고
    • Metabolic Path Finding: Inferring relevant pathways in biochemical networks
    • Croes D, Couche F, Wodak SJ, et al. Metabolic Path Finding: inferring relevant pathways in biochemical networks. Nucleic Acids Res 2005;33:326-30.
    • (2005) Nucleic Acids Res , vol.33 , pp. 326-330
    • Croes, D.1    Couche, F.2    Wodak, S.J.3
  • 49
    • 33645319955 scopus 로고    scopus 로고
    • Predicting interactions in protein networks by completing defective cliques
    • Yu H, Paccanaro A, Trifonov V, et al. Predicting interactions in protein networks by completing defective cliques. Bioinformatics 2006;22:823-9.
    • (2006) Bioinformatics , vol.22 , pp. 823-829
    • Yu, H.1    Paccanaro, A.2    Trifonov, V.3
  • 50
    • 12344323594 scopus 로고    scopus 로고
    • Conserved network motifs allow protein-protein interaction prediction
    • Albert I, Albert R. Conserved network motifs allow protein-protein interaction prediction. Bioinformatics 2004; 20:3346-52.
    • (2004) Bioinformatics , vol.20 , pp. 3346-3352
    • Albert, I.1    Albert, R.2
  • 51
    • 24744435534 scopus 로고    scopus 로고
    • Kernel methods for predicting protein-protein interactions
    • Ben-Hur A, Noble WS. Kernel methods for predicting protein-protein interactions. Bioinformatics 2005;21 (Suppl. 1):38-46.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1 , pp. 38-46
    • Ben-Hur, A.1    Noble, W.S.2
  • 52
    • 8144227773 scopus 로고    scopus 로고
    • Combining biological networks to predict genetic interactions
    • Wong SL, Zhang LV, Tong AH, et al. Combining biological networks to predict genetic interactions. Proc Natl Acad Sci 2004;101 15682-7.
    • (2004) Proc Natl Acad Sci , vol.101 , pp. 15682-15687
    • Wong, S.L.1    Zhang, L.V.2    Tong, A.H.3
  • 53
    • 22044433259 scopus 로고    scopus 로고
    • Rosse C relations in biomedical ontologies
    • Smith B, Ceusters W, Klagges B, et al. Rosse C relations in biomedical ontologies. Genome Biol 2005;6:R46.
    • (2005) Genome Biol , vol.6
    • Smith, B.1    Ceusters, W.2    Klagges, B.3
  • 54
    • 34347389680 scopus 로고    scopus 로고
    • A systems biology approach to the study of cisplatin drug resistance in ovarian cancers
    • Chen JY, Zhong Y, Changyu S, et al. A systems biology approach to the study of cisplatin drug resistance in ovarian cancers. J Bioinform Comput Biol 2007;5:383-405.
    • (2007) J Bioinform Comput Biol , vol.5 , pp. 383-405
    • Chen, J.Y.1    Zhong, Y.2    Changyu, S.3
  • 55
    • 63549137956 scopus 로고    scopus 로고
    • HAPPI: An Online Database of Comprehensive Human Annotated and Predicted Protein Interactions
    • in press
    • Chen JY, Mamidipalli SR, Huan T. HAPPI: An Online Database of Comprehensive Human Annotated and Predicted Protein Interactions. BMC Genomics 2009; in press.
    • (2009) BMC Genomics
    • Chen, J.Y.1    Mamidipalli, S.R.2    Huan, T.3
  • 56
    • 0037174670 scopus 로고    scopus 로고
    • Network motifs: Simple building blocks of complex networks
    • Milo R, Shen-Orr S, Itzkovitz S, et al. Network motifs: Simple building blocks of complex networks. Science 2002; 298:824-7.
    • (2002) Science , vol.298 , pp. 824-827
    • Milo, R.1    Shen-Orr, S.2    Itzkovitz, S.3
  • 57
    • 44349107818 scopus 로고    scopus 로고
    • A review on models and algorithms for motif discovery in protein-protein interaction networks
    • Ciriello G, Guerra C. A review on models and algorithms for motif discovery in protein-protein interaction networks. Brief Funct Genomics Proteomics 2008;7:147-56.
    • (2008) Brief Funct Genomics Proteomics , vol.7 , pp. 147-156
    • Ciriello, G.1    Guerra, C.2
  • 58
    • 6944240088 scopus 로고    scopus 로고
    • Local graph alignment and motif search in biological networks
    • Berg J, Lassig M. Local graph alignment and motif search in biological networks. Proc Natl Acad Sci 2004;101: 14689-94.
    • (2004) Proc Natl Acad Sci , vol.101 , pp. 14689-14694
    • Berg, J.1    Lassig, M.2
  • 59
    • 0000801240 scopus 로고    scopus 로고
    • Discovering regulatory and signalling circuits in molecular interaction networks
    • Ideker T, Ozier O, Schwikowski B, et al. Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 2002;18(Suppl. 1):S233-40.
    • (2002) Bioinformatics , vol.18 , Issue.SUPPL. 1
    • Ideker, T.1    Ozier, O.2    Schwikowski, B.3
  • 60
    • 14844305006 scopus 로고    scopus 로고
    • An efficient algorithm for detecting frequent sub-graphs in biological networks
    • Koyuturk M, Grama A, Szpankowski W. An efficient algorithm for detecting frequent sub-graphs in biological networks. Bioinformatics 2004; 20(Suppl. 1):I200-7.
    • (2004) Bioinformatics , vol.20 , Issue.SUPPL. 1
    • Koyuturk, M.1    Grama, A.2    Szpankowski, W.3
  • 61
    • 33745433838 scopus 로고    scopus 로고
    • Network motif identification in stochastic networks
    • Jiang R, Tu Z, Chen T, Sun F. Network motif identification in stochastic networks. Proc Natl Acad Sci 2006;103:9404-9.
    • (2006) Proc Natl Acad Sci , vol.103 , pp. 9404-9409
    • Jiang, R.1    Tu, Z.2    Chen, T.3    Sun, F.4
  • 62
    • 29144474447 scopus 로고    scopus 로고
    • Mining coherent dense subgraphs across massive biological networks for functional discovery
    • Hu H, Yan X, Huang Y, et al. Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics 2005;21(Suppl 1):i213-21.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1
    • Hu, H.1    Yan, X.2    Huang, Y.3
  • 63
    • 4444268694 scopus 로고    scopus 로고
    • Efficient sampling algorithm for estimating sub-graph concentrations and detecting network motifs
    • Kashtan N, Itzkovitz S, Milo R. Efficient sampling algorithm for estimating sub-graph concentrations and detecting network motifs. Bioinformatics 2004;20: 1746-58.
    • (2004) Bioinformatics , vol.20 , pp. 1746-1758
    • Kashtan, N.1    Itzkovitz, S.2    Milo, R.3
  • 64
    • 33646153295 scopus 로고    scopus 로고
    • FANMOD: A tool for fast network motif detection
    • Wernicke S, Rasche F. FANMOD: A tool for fast network motif detection. Bioinformatics 2006;22:1152-3.
    • (2006) Bioinformatics , vol.22 , pp. 1152-1153
    • Wernicke, S.1    Rasche, F.2
  • 65
    • 24144495559 scopus 로고    scopus 로고
    • MAVisto: A tool for the exploration of network motifs
    • Schreiber F, Schwobbermeyer H. MAVisto: A tool for the exploration of network motifs. Bioinformatics 2005;21: 3572-4.
    • (2005) Bioinformatics , vol.21 , pp. 3572-3574
    • Schreiber, F.1    Schwobbermeyer, H.2
  • 67
    • 34547335088 scopus 로고    scopus 로고
    • Frequent pattern mining: Current status and future directions
    • Han J, Cheng H, Xin D, Yan X. Frequent pattern mining: Current status and future directions. Data Mining Knowl Discov 2007;15 55-86.
    • (2007) Data Mining Knowl Discov , vol.15 , pp. 55-86
    • Han, J.1    Cheng, H.2    Xin, D.3    Yan, X.4
  • 68
    • 0033518234 scopus 로고    scopus 로고
    • From molecular to modular cell biology
    • Hartwell LH, Hopfiled JJ, Leibler S, et al. From molecular to modular cell biology. Nature 1999;402(Suppl. 6761): C47-52.
    • (1999) Nature , vol.402 , Issue.SUPPL. 6761
    • Hartwell, L.H.1    Hopfiled, J.J.2    Leibler, S.3
  • 69
    • 33745012299 scopus 로고    scopus 로고
    • From the cover: Modularity and community structure in networks
    • Newman MEJ. From the cover: Modularity and community structure in networks. Proc Natl Acad Sci 2006; 103:8577-82.
    • (2006) Proc Natl Acad Sci , vol.103 , pp. 8577-8582
    • Newman, M.E.J.1
  • 70
    • 0037417817 scopus 로고    scopus 로고
    • Modular organization of cellular networks
    • Rives AW, Galitski T. Modular organization of cellular networks. Proc Natl Acad Sci 2003;100:1128-33.
    • (2003) Proc Natl Acad Sci , vol.100 , pp. 1128-1133
    • Rives, A.W.1    Galitski, T.2
  • 71
    • 28644449917 scopus 로고    scopus 로고
    • How does gene expression clustering work?
    • Dhaeseleer P. How does gene expression clustering work? Nat Biotechnol 2005;23:1499-501.
    • (2005) Nat Biotechnol , vol.23 , pp. 1499-1501
    • Dhaeseleer, P.1
  • 72
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data
    • Segal E, Shapira M, Regev A, et al. Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 2003;34: 166-76.
    • (2003) Nat Genet , vol.34 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3
  • 73
    • 10744226222 scopus 로고    scopus 로고
    • Computational discovery of gene modules and regulatory networks
    • Bar-Joseph Z, Gerber GK, Lee TI, et al. Computational discovery of gene modules and regulatory networks. Nat Biotechnol 2003;21 1337-42.
    • (2003) Nat Biotechnol , vol.21 , pp. 1337-1342
    • Bar-Joseph, Z.1    Gerber, G.K.2    Lee, T.I.3
  • 74
    • 10244264813 scopus 로고    scopus 로고
    • Protein complex prediction via cost-based clustering
    • King AD, Przulj N, Jurisica I. Protein complex prediction via cost-based clustering. Bioinformatics 2004;20: 3013-20.
    • (2004) Bioinformatics , vol.20 , pp. 3013-3020
    • King, A.D.1    Przulj, N.2    Jurisica, I.3
  • 75
    • 25444490121 scopus 로고    scopus 로고
    • The use of edge-betweenness clustering to investigate biological function in protein interaction networks
    • Dunn R, Dudbridge F, Sanderson CM. The use of edge-betweenness clustering to investigate biological function in protein interaction networks. BMC Bioinform 2005;6: 39-47.
    • (2005) BMC Bioinform , vol.6 , pp. 39-47
    • Dunn, R.1    Dudbridge, F.2    Sanderson, C.M.3
  • 76
    • 31944448776 scopus 로고    scopus 로고
    • Edge-count probabilities for the identification of local protein communities and their organization
    • Farutin V, Robison K, Lightcap E, et al. Edge-count probabilities for the identification of local protein communities and their organization. Proteins 2006;62: 800-18.
    • (2006) Proteins , vol.62 , pp. 800-818
    • Farutin, V.1    Robison, K.2    Lightcap, E.3
  • 77
    • 0142059836 scopus 로고    scopus 로고
    • Protein complexes and functional modules in molecular networks
    • Spirin V, Mirny LA. Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci 2003;100: 12123-8.
    • (2003) Proc Natl Acad Sci , vol.100 , pp. 12123-12128
    • Spirin, V.1    Mirny, L.A.2
  • 78
    • 0346156102 scopus 로고    scopus 로고
    • Detection of functional modules from protein interaction networks
    • Pereira-Leal JB, Enright AJ, Ouzounis CA. Detection of functional modules from protein interaction networks. Proteins 2004;54 49-57.
    • (2004) Proteins , vol.54 , pp. 49-57
    • Pereira-Leal, J.B.1    Enright, A.J.2    Ouzounis, C.A.3
  • 79
    • 4444234772 scopus 로고    scopus 로고
    • Decomposition of metabolic network into functional modules based on the global connectivity structure of reaction graph
    • Ma HW, Zhao XM, Yuan YJ, et al. Decomposition of metabolic network into functional modules based on the global connectivity structure of reaction graph. Bioinformatics 2004;20:1870-6.
    • (2004) Bioinformatics , vol.20 , pp. 1870-1876
    • Ma, H.W.1    Zhao, X.M.2    Yuan, Y.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.