메뉴 건너뛰기




Volumn 3, Issue , 2008, Pages 109-113

Kernel Fisher discriminant analysis using feature vector selection for fault diagnosis

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL COMPLEXITY; COMPUTATIONAL GEOMETRY; DISCRIMINANT ANALYSIS; FISHER INFORMATION MATRIX; IMAGE RETRIEVAL; INFORMATION TECHNOLOGY; LEARNING ALGORITHMS; PROCESS MONITORING;

EID: 62949162722     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IITA.2008.172     Document Type: Conference Paper
Times cited : (5)

References (13)
  • 1
    • 0035885219 scopus 로고    scopus 로고
    • Fault diagnosis of multivariate systems using pattern recognition and multisensor data analysis technique
    • F. Akbaryan, P.R. Bishnoi, "Fault diagnosis of multivariate systems using pattern recognition and multisensor data analysis technique", Computers and Chemical Engineering, 25, 2001, pp. 1313-1339.
    • (2001) Computers and Chemical Engineering , vol.25 , pp. 1313-1339
    • Akbaryan, F.1    Bishnoi, P.R.2
  • 2
    • 0034643075 scopus 로고    scopus 로고
    • Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis
    • L.H. Chiang, E.L. Russell, R.D. Braatz, "Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis", Chemometrics and intelligent laboratory systems, (50) 2000, pp. 243-252.
    • (2000) Chemometrics and intelligent laboratory systems , vol.50 , pp. 243-252
    • Chiang, L.H.1    Russell, E.L.2    Braatz, R.D.3
  • 3
    • 9744237208 scopus 로고    scopus 로고
    • Multiple-fault diagnosis of the Tennessee Eastman process based on system decomposition and dynamic PLS
    • G. Lee, C. H. Han, E. S. Yoon, "Multiple-fault diagnosis of the Tennessee Eastman process based on system decomposition and dynamic PLS", Industrial & Engineering Chemistry Research, (43)2004, pp. 8037-8048.
    • (2004) Industrial & Engineering Chemistry Research , vol.43 , pp. 8037-8048
    • Lee, G.1    Han, C.H.2    Yoon, E.S.3
  • 4
    • 24644515417 scopus 로고    scopus 로고
    • Kernel machine-based one-parameter regularized Fisher discriminant method for face recognition, IEEE Transactions on Systems, Man, and Cybernetics-PartB
    • W. S. Chen, P. C. Yuen, J. Huang, et al. "Kernel machine-based one-parameter regularized Fisher discriminant method for face recognition", IEEE Transactions on Systems, Man, and Cybernetics-PartB: Cybernetics, 35(4), 2005, pp. 659-669.
    • (2005) Cybernetics , vol.35 , Issue.4 , pp. 659-669
    • Chen, W.S.1    Yuen, P.C.2    Huang, J.3
  • 5
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a kernel approach
    • G. Baudat, F. Anouar, "Generalized discriminant analysis using a kernel approach", Neural Computation, 12(10), 2000, pp. 2385-2404.
    • (2000) Neural Computation , vol.12 , Issue.10 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 6
    • 0141639615 scopus 로고    scopus 로고
    • Efficient leave-one-out cross-validation of kernel Fisher discriminant classifiers
    • G.C. Cawley, N.L.C. Talbot, "Efficient leave-one-out cross-validation of kernel Fisher discriminant classifiers", Pattern Recognition, 36(11), 2003, pp. 2585-2592.
    • (2003) Pattern Recognition , vol.36 , Issue.11 , pp. 2585-2592
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 7
    • 0036195207 scopus 로고    scopus 로고
    • Nonlinear Fisher discriminant analysis using a minimum squared error cost function and the orthogonal least squares algorithm
    • S.A. Billings, K.L. Lee, "Nonlinear Fisher discriminant analysis using a minimum squared error cost function and the orthogonal least squares algorithm", Neural network, 15(2), 2002, pp. 263-270.
    • (2002) Neural network , vol.15 , Issue.2 , pp. 263-270
    • Billings, S.A.1    Lee, K.L.2
  • 8
    • 2142640604 scopus 로고    scopus 로고
    • PCA of wavelet transformed process data for monitoring
    • 1
    • K.A. Kosanovich, M.J. Piovoso, "PCA of wavelet transformed process data for monitoring", intelligent data analysis, (1) 1997, p. 85-99.
    • (1997) intelligent data analysis , pp. 85-99
    • Kosanovich, K.A.1    Piovoso, M.J.2
  • 9
    • 0033652903 scopus 로고    scopus 로고
    • Wavelet-PLS regression models for both exploratory data analysis and process monitoring
    • P. Teppola, P. Minkkinen, "Wavelet-PLS regression models for both exploratory data analysis and process monitoring", Journal of Chemometrics, (14) 2000, pp. 383-399.
    • (2000) Journal of Chemometrics , vol.14 , pp. 383-399
    • Teppola, P.1    Minkkinen, P.2
  • 10
    • 0034296402 scopus 로고    scopus 로고
    • Kernel-based methods and function approximation
    • G. Baudat, F. Anouar, "Kernel-based methods and function approximation", Neural Computation, 12(10), 2000, pp. 2385-2404
    • (2000) Neural Computation , vol.12 , Issue.10 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 12
    • 39149090647 scopus 로고    scopus 로고
    • An efficient adaptive thresholding technique for wavelet based image de-noising
    • D. Gnanadurai, V. Sadasivam, "An efficient adaptive thresholding technique for wavelet based image de-noising", Int. J. Sig. Proc, 2(2), 2005, pp. 114-119.
    • (2005) Int. J. Sig. Proc , vol.2 , Issue.2 , pp. 114-119
    • Gnanadurai, D.1    Sadasivam, V.2
  • 13
    • 0027561446 scopus 로고
    • plant-wide industrial process control problem
    • J.H. Downs, E.F. Vogel, "plant-wide industrial process control problem", Computers Chemical Engineering, 17(3), 1993, pp. 245-255.
    • (1993) Computers Chemical Engineering , vol.17 , Issue.3 , pp. 245-255
    • Downs, J.H.1    Vogel, E.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.