-
1
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, Boosting and Variants
-
E. Bauer and R. Kohavi, "An empirical comparison of voting classification algorithms: Bagging, Boosting and Variants". Machine Learning, 1999, pp. 105-139.
-
(1999)
Machine Learning
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
2
-
-
0030211964
-
Bagging predictors
-
L. Breiman, "Bagging predictors", Machine Learning. 1996, pp. 123-140
-
(1996)
Machine Learning
, pp. 123-140
-
-
Breiman, L.1
-
6
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, Boosting and Randomization
-
T.G. Dietterich, "An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, Boosting and Randomization", Machine Learning, 2000, pp. 139-157.
-
(2000)
Machine Learning
, pp. 139-157
-
-
Dietterich, T.G.1
-
7
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Y. Freund and R. Schapire, "A decision-theoretic generalization of on-line learning and an application to boosting", Journal of Computer and System Sciences, 1997, pp. 119-139.
-
(1997)
Journal of Computer and System Sciences
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.2
-
8
-
-
0002432565
-
Multivariate adaptive regression splines (with discussion)
-
J.H. Friedman, "Multivariate adaptive regression splines (with discussion)", it Annals of Statistics, 1991, pp.1-141.
-
(1991)
It Annals of Statistics
, pp. 1-141
-
-
Friedman, J.H.1
-
9
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
J.H. Friedman, "Greedy function approximation : a gradient boosting machine", Annals of Statistics, 2001, pp/1189-1232.
-
(2001)
Annals of Statistics
, pp. 1189-1232
-
-
Friedman, J.H.1
-
10
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
J.H. Friedman, T. Hastie and R. Tibshirani, "Additive logistic regression : a statistical view of boosting", Annals of Statistics, 2000, pp. 337-374.
-
(2000)
Annals of Statistics
, pp. 337-374
-
-
Friedman, J.H.1
Hastie, T.2
Tibshirani, R.3
-
11
-
-
0036116123
-
On weak base hypotheses and their implications for boosting regression classification
-
W. Jiang, "On weak base hypotheses and their implications for boosting regression classification", Annals of Statistics, 2002, pp.51-73.
-
(2002)
Annals of Statistics
, pp. 51-73
-
-
Jiang, W.1
-
14
-
-
84949196941
-
Boosting first-order learning
-
S. Arikawa & Sharma Eds., Proceedings of the 7th International Workshop on Algorithmic Learning Theory Berlin : Springer
-
J. Quinlan, "Boosting first-order learning", In S. Arikawa & Sharma Eds.), LNAI, Vol. 1160: Proceedings of the 7th International Workshop on Algorithmic Learning Theory 143-155, Berlin : Springer.
-
LNAI
, vol.1160
, pp. 143-155
-
-
Quinlan, J.1
-
16
-
-
17444382204
-
Contribution to the discussion of paper by Friedman, Hastie and Tibshirani
-
G. Ridgeway, "Contribution to the discussion of paper by Friedman, Hastie and Tibshirani", Ann. Statist., 2000, pp. 393-400.
-
(2000)
Ann. Statist.
, pp. 393-400
-
-
Ridgeway, G.1
-
17
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
R. Schapire, Y. Freund, P. Bartlett and W. Lee, "Boosting the margin: a new explanation for the effectiveness of voting methods", Ann. Statist., 1998, pp. 1651-1686.
-
(1998)
Ann. Statist.
, pp. 1651-1686
-
-
Schapire, R.1
Freund, Y.2
Bartlett, P.3
Lee, W.4
-
18
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
R. Schapire and Y. Singer, "Improved boosting algorithms using confidence-rated predictions", Machine Learning, 1999, pp. 297-336.
-
(1999)
Machine Learning
, pp. 297-336
-
-
Schapire, R.1
Singer, Y.2
|