-
1
-
-
0003949945
-
-
Cundari, T. R, Ed, Marcel Dekker: New York
-
McGee, A.; Dale, F. S.; Yoon, S. S.; Hamilton, T. P. In Computational Organometallic Chemistry; Cundari, T. R., Ed.; Marcel Dekker: New York, 2001; pp 381-396.
-
(2001)
Computational Organometallic Chemistry
, pp. 381-396
-
-
McGee, A.1
Dale, F.S.2
Yoon, S.S.3
Hamilton, T.P.4
-
2
-
-
33846100278
-
-
2 with increasing levels of sophistication. For a recent, very high-level approach, see: Grant, D. J.; Dixon, D. A. J. Phys. Chem. A 2006, 110, 12955-12962.
-
2 with increasing levels of sophistication. For a recent, very high-level approach, see: Grant, D. J.; Dixon, D. A. J. Phys. Chem. A 2006, 110, 12955-12962.
-
-
-
-
3
-
-
0000627664
-
-
(a) Power, P. P. Chem. Rev. 1999, 99, 3463-3503.
-
(1999)
Chem. Rev
, vol.99
, pp. 3463-3503
-
-
Power, P.P.1
-
8
-
-
33751386405
-
-
Waggoner, K. M.; Ruhlandt-Senge, K.; Wehmschulte, R. J.; He, X.; Olmstead, M. M.; Power, P. P. Inorg. Chem. 1993, 32, 2557-2561.
-
(1993)
Inorg. Chem
, vol.32
, pp. 2557-2561
-
-
Waggoner, K.M.1
Ruhlandt-Senge, K.2
Wehmschulte, R.J.3
He, X.4
Olmstead, M.M.5
Power, P.P.6
-
9
-
-
61849132941
-
-
Frisch, M. J, Trucks, G. W, Schlegel, H. B, Scuseria, G. E, Robb, M. A, Cheeseman, J. R, Zakrzewski, V. G, Montgomery, J. A, Jr, Stratmann, R. E, Burant, J. C, Dapprich, S, Millam, J. M, Daniels, A. D, Kudin, K. N, Strain, M. C, Farkas, O, Tomasi, J, Barone, V, Cossi, M, Cammi, R, Mennucci, B, Pomelli, C, Adamo, C, Clifford, S, Ochterski, J, Petersson, G. A, Ayala, P. Y, Cui, Q, Morokuma, K, Malick, A. D, Rabuck, K. D, Raghavachari, K, Foresman, J. B, Cioslowski, J, Ortiz, J. V, Baboul, A. G, Stefanov, B. B, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Gomperts, R, Martin, R. L, Fox, D. J, Keith, T, Al-Laham, M. A, Peng, C. Y, Nanayakkara, A, Challacombe, M, Gill, P. M. W, Johnson, B, Chen, W, Wong, M. W, Andres, J. L, Gonzalez, C, Head-Gordon, M, Replogle, E. S, Pople, J. A. Gaussian 98, Revision A. 11.4; Gaussian, Inc, Pittsburgh, PA, 1998
-
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, A. D.; Rabuck, K. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A. 11.4; Gaussian, Inc., Pittsburgh, PA, 1998.
-
-
-
-
11
-
-
61849157497
-
-
As a reviewer noted, the presence of a stable minimum for the dimer structure that is endothermic with respect to two molecules of monomer implies the presence of a barrier, and a transition-state structure. Our interest is in finding a monomeric aminoalane that will react with organic substrates in preference to reacting with itself. Since the implication of endothermic dimerization of 1 is that it will not dimerize easily in contrast to the other aminoalanes in Table 1, we have not searched diligently for this transition state. Our assumption from the data is that 1, if synthesized, will remain monomeric and will contain a planar C2A1, NC2 core. Similar reasoning applies to formation of 7 prox and 7 dist. If the reactions are endothermic, then regardless of the barrier height, separation of the tricyclic product into 1 and cyclopentadiene will be preferred
-
2 core. Similar reasoning applies to formation of 7 prox and 7 dist. If the reactions are endothermic, then regardless of the barrier height, separation of the tricyclic product into 1 and cyclopentadiene will be preferred.
-
-
-
-
13
-
-
43049141516
-
-
The M06 suite of DFT models has been so calibrated for several databases of small molecules, showing considerable promise in its energetic predictions. However, the suite still needs to be tested with molecules of the size in this work. We plan to calibrate the M06 suite against the OG2Rx methods in the future using large molecules. See: Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215-241.
-
The M06 suite of DFT models has been so calibrated for several databases of small molecules, showing considerable promise in its energetic predictions. However, the suite still needs to be tested with molecules of the size in this work. We plan to calibrate the M06 suite against the OG2Rx methods in the future using large molecules. See: Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215-241.
-
-
-
-
14
-
-
0001213712
-
-
A key problem with the B3LYP model, for example, is that its thermochemistry predictions decrease substantially and systematically in accuracy as the number of carbon atoms increases. See ref 10 and: Curtiss, L. A, Raghavachari, K, Redfern, P. C, Pople, J. A. J. Chem. Phys. 2000, 112, 7374-7383
-
A key problem with the B3LYP model, for example, is that its thermochemistry predictions decrease substantially and systematically in accuracy as the number of carbon atoms increases. See ref 10 and: Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J. Chem. Phys. 2000, 112, 7374-7383.
-
-
-
-
23
-
-
0000167446
-
-
Nakamura, K.; Makino, O.; Tachibana, A.; Matsumoto, K. J. Organomet. Chem. 2000, 611, 514-524.
-
(2000)
J. Organomet. Chem
, vol.611
, pp. 514-524
-
-
Nakamura, K.1
Makino, O.2
Tachibana, A.3
Matsumoto, K.4
-
24
-
-
0030762050
-
-
Timoshkin, A. Y.; Bettinger, H. F.; Schaefer, H. F., III J. Am. Chem. Soc. 1997, 119, 5668-5678.
-
(1997)
J. Am. Chem. Soc
, vol.119
, pp. 5668-5678
-
-
Timoshkin, A.Y.1
Bettinger, H.F.2
Schaefer III, H.F.3
-
26
-
-
61849098911
-
-
Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F. NBO 5.0; Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2001.
-
Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F. NBO 5.0; Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2001.
-
-
-
-
31
-
-
4644319293
-
-
For two examples among many, see: a
-
For two examples among many, see: (a) Bachrach, S. M.; Gilbert, J. C. J. Org. Chem. 2004, 69, 6357-6364.
-
(2004)
J. Org. Chem
, vol.69
, pp. 6357-6364
-
-
Bachrach, S.M.1
Gilbert, J.C.2
-
32
-
-
0038155133
-
-
(b) Leach, A. G.; Goldstein, E.; Houk, K. N. J. Am. Chem. Soc. 2003, 125, 8330-8339.
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 8330-8339
-
-
Leach, A.G.1
Goldstein, E.2
Houk, K.N.3
-
33
-
-
61849160490
-
-
Isomers are designated on the basis of three options: Al means the vinyl substituent lies on the aluminum side of the Al - N bond, and N means it lies on the nitrogen side; prox means the vinyl substituent lies on the six-membered-ring side of the Al - N bond, and dist means it lies on the opposite side; cis means the butadiene adopts a cis geometry, and trans means it adopts a trans geometry.
-
Isomers are designated on the basis of three options: Al means the vinyl substituent lies on the aluminum side of the Al - N bond, and N means it lies on the nitrogen side; prox means the vinyl substituent lies on the six-membered-ring side of the Al - N bond, and dist means it lies on the opposite side; cis means the butadiene adopts a cis geometry, and trans means it adopts a trans geometry.
-
-
-
-
34
-
-
0003887404
-
-
3rd ed, Harper & Row: New York, NY, Chapter 2.3
-
Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper & Row: New York, NY, 1987; Chapter 2.3.
-
(1987)
Mechanism and Theory in Organic Chemistry
-
-
Lowry, T.H.1
Richardson, K.S.2
|