메뉴 건너뛰기




Volumn 16, Issue 3, 2009, Pages 475-486

A model-based approach to gene clustering with missing observation reconstruction in a Markov random field framework

Author keywords

Biological interaction network; Gene clustering; Markov random field; Mean field like approximation; Missing data

Indexed keywords

ALGORITHM; ARTICLE; CELL COMPOSITION; CELL CYCLE; EXPERIMENT; GENE; GENE CLUSTER; GENE EXPRESSION; GENE INTERACTION; GENETIC ANALYSIS; KNOWLEDGE; NONHUMAN; OBSERVATION; PRIORITY JOURNAL; PROBABILITY; PROCESSING; YEAST;

EID: 61749098808     PISSN: 10665277     EISSN: None     Source Type: Journal    
DOI: 10.1089/cmb.2008.0078     Document Type: Article
Times cited : (7)

References (27)
  • 1
    • 0001677717 scopus 로고
    • Controlling the false dicovery rate - a practical and powerful approach to multiple testing
    • Benjamini, Y., and Hochberg, Y. 1995. Controlling the false dicovery rate - a practical and powerful approach to multiple testing. J.R. Statist. Soc. Ser. B 57, 289-300.
    • (1995) J.R. Statist. Soc. Ser. B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 2
    • 47649100778 scopus 로고    scopus 로고
    • Combined expression data with missing values and gene interaction network analysis: A Markovian integrated approach
    • Blanchet, J., and Vignes, M. 2007. Combined expression data with missing values and gene interaction network analysis: a Markovian integrated approach. Proc. 7th IEEE BIBE 366-373.
    • (2007) Proc. 7th IEEE BIBE , pp. 366-373
    • Blanchet, J.1    Vignes, M.2
  • 3
    • 43249090568 scopus 로고    scopus 로고
    • Triplet Markov fields for supervised classification of complex structure data
    • Blanchet, J., and Forbes, F. 2008. Triplet Markov fields for supervised classification of complex structure data. IEEE PAMI 30, 1055-1067.
    • (2008) IEEE PAMI , vol.30 , pp. 1055-1067
    • Blanchet, J.1    Forbes, F.2
  • 4
    • 2342646842 scopus 로고    scopus 로고
    • LSimpute: Accurate estimation of missing values in microarray data with least square methods
    • Bo, T.H., Dysvik, B., and Jonassen, I. 2004. LSimpute: accurate estimation of missing values in microarray data with least square methods. Nucleic Acids Res. 32, e34.
    • (2004) Nucleic Acids Res , vol.32
    • Bo, T.H.1    Dysvik, B.2    Jonassen, I.3
  • 5
    • 39749093807 scopus 로고    scopus 로고
    • Which missing value imputation method to use in expression profiles: A comparative study and two selection schemes
    • Brock, G.N., Shaffer, J.R., Blakesley, R.E., et al. 2008. Which missing value imputation method to use in expression profiles: a comparative study and two selection schemes. BMC Bioinform. 9, 12.
    • (2008) BMC Bioinform , vol.9 , pp. 12
    • Brock, G.N.1    Shaffer, J.R.2    Blakesley, R.E.3
  • 6
    • 53549114249 scopus 로고    scopus 로고
    • Selecting hidden Markov model state number with cross-validated likelihood
    • Celeux, G., and Durand, J.B. 2007. Selecting hidden Markov model state number with cross-validated likelihood. Comput. Statist. 23, 541-564.
    • (2007) Comput. Statist , vol.23 , pp. 541-564
    • Celeux, G.1    Durand, J.B.2
  • 7
    • 0037209490 scopus 로고    scopus 로고
    • EM procedures using mean-field like approximations for Markov-model based image segmentation
    • Celeux, G., Forbes, F., and Peyrard, N. 2003. EM procedures using mean-field like approximations for Markov-model based image segmentation. Pattern Recog. 36, 131-144.
    • (2003) Pattern Recog , vol.36 , pp. 131-144
    • Celeux, G.1    Forbes, F.2    Peyrard, N.3
  • 8
    • 0032112293 scopus 로고    scopus 로고
    • A genome-wide transcriptional analysis of the mitotic cell cycle
    • Cho, R.J., Campbell, M.J., Winzeler, E.A., et al. 1998. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65-73.
    • (1998) Mol. Cell , vol.2 , pp. 65-73
    • Cho, R.J.1    Campbell, M.J.2    Winzeler, E.A.3
  • 9
  • 10
    • 33947218847 scopus 로고    scopus 로고
    • Combining Monte Carlo and mean-field-like methods for inference in hidden Markov random fields
    • Forbes, F., and Fort, G. 2007. Combining Monte Carlo and mean-field-like methods for inference in hidden Markov random fields. IEEE Trans. Image Process. 16, 824-837.
    • (2007) IEEE Trans. Image Process , vol.16 , pp. 824-837
    • Forbes, F.1    Fort, G.2
  • 11
    • 0141613707 scopus 로고    scopus 로고
    • Hidden Markov random field model selection criteria based on mean field-like approximations
    • Forbes, F., and Peyrard, N. 2003. Hidden Markov random field model selection criteria based on mean field-like approximations. IEEE Trans. Patt. Anal. Mach. Intell. 25, 1089-1101.
    • (2003) IEEE Trans. Patt. Anal. Mach. Intell , vol.25 , pp. 1089-1101
    • Forbes, F.1    Peyrard, N.2
  • 12
    • 0034069495 scopus 로고    scopus 로고
    • Gene Ontology: Tool for the unification of biology
    • Gene Ontology Consortium
    • Gene Ontology Consortium. 2000. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25-29.
    • (2000) Nat. Genet , vol.25 , pp. 25-29
  • 13
    • 33750386831 scopus 로고    scopus 로고
    • Integrative missing value estimation for microarray data
    • Hu, J., Li, H., Waterman, M.S., et al. 2006. Integrative missing value estimation for microarray data. BMC Bioinform. 7, 449.
    • (2006) BMC Bioinform , vol.7 , pp. 449
    • Hu, J.1    Li, H.2    Waterman, M.S.3
  • 14
    • 33845882199 scopus 로고    scopus 로고
    • Towards clustering of incomplete microarray data without the use of imputation
    • Kim, D.W., Lee, K.Y., Lee, K.H., et al. 2007. Towards clustering of incomplete microarray data without the use of imputation. Bioinformatics 23, 107-113.
    • (2007) Bioinformatics , vol.23 , pp. 107-113
    • Kim, D.W.1    Lee, K.Y.2    Lee, K.H.3
  • 15
    • 13444304426 scopus 로고    scopus 로고
    • Missing value estimation for DNA microarray gene expression data: Local least squares imputation
    • Kim, H., Golub, G.H., and Park, H. 2005. Missing value estimation for DNA microarray gene expression data: local least squares imputation. Bioinformatics 21, 187-198.
    • (2005) Bioinformatics , vol.21 , pp. 187-198
    • Kim, H.1    Golub, G.H.2    Park, H.3
  • 18
    • 0242643743 scopus 로고    scopus 로고
    • A Bayesian missing value estimation method
    • Oba, S., Sato, M., Takemasa, I., et al. 2003. A Bayesian missing value estimation method. Bioinformatics 19, 2088-2096.
    • (2003) Bioinformatics , vol.19 , pp. 2088-2096
    • Oba, S.1    Sato, M.2    Takemasa, I.3
  • 19
    • 2342426727 scopus 로고    scopus 로고
    • Gaussian mixture clustering and imputation of microarray data
    • Ouyang, M., Welsh, W.J., and Georgopoulos, P. 2004. Gaussian mixture clustering and imputation of microarray data. Bioinformatics 20, 917-923.
    • (2004) Bioinformatics , vol.20 , pp. 917-923
    • Ouyang, M.1    Welsh, W.J.2    Georgopoulos, P.3
  • 20
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. 1978. Estimating the dimension of a model. Annals Stat. 6, 131-134.
    • (1978) Annals Stat , vol.6 , pp. 131-134
    • Schwarz, G.1
  • 21
    • 19644375092 scopus 로고    scopus 로고
    • Collateral missing value imputation: A new robust missing value estimation algorithm for microarray data
    • Sehgal, M.S., Gondal, I., and Dooley, L.S. 2005. Collateral missing value imputation: a new robust missing value estimation algorithm for microarray data. Bioinformatics 21, 2417-2423.
    • (2005) Bioinformatics , vol.21 , pp. 2417-2423
    • Sehgal, M.S.1    Gondal, I.2    Dooley, L.S.3
  • 22
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hydridization
    • Spellman, P.T., Sherlock, G., Zhang, M.Q., et al. 1998. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hydridization. Mol. Biol. Cell 9, 3273-3297.
    • (1998) Mol. Biol. Cell , vol.9 , pp. 3273-3297
    • Spellman, P.T.1    Sherlock, G.2    Zhang, M.Q.3
  • 23
    • 0034960264 scopus 로고    scopus 로고
    • Missing values estimation methods for DNA microarrays
    • Troyanskaya, O., Cantor, M., Sherlock, G., et al. 2001. Missing values estimation methods for DNA microarrays. Bioinformatics 17, 520-525.
    • (2001) Bioinformatics , vol.17 , pp. 520-525
    • Troyanskaya, O.1    Cantor, M.2    Sherlock, G.3
  • 24
    • 43249122279 scopus 로고    scopus 로고
    • Gene clustering via integrated Markov models combining individual and pairwise features
    • in press
    • Vignes, M., and Forbes, F. 2007. Gene clustering via integrated Markov models combining individual and pairwise features. IEEE/ACM Trans. Comput. Biol. Bioinform. (in press).
    • (2007) IEEE/ACM Trans. Comput. Biol. Bioinform
    • Vignes, M.1    Forbes, F.2
  • 25
    • 33846086800 scopus 로고    scopus 로고
    • recent developments in the integration and prediction of proteins interactions
    • STRING 7
    • von Mering, C., Jensen, L.J., Kuhn, M., et al. 2007. STRING 7 - recent developments in the integration and prediction of proteins interactions. Nucleic Acids Res. 35, D358-D362.
    • (2007) Nucleic Acids Res , vol.35
    • von Mering, C.1    Jensen, L.J.2    Kuhn, M.3
  • 26
    • 33645037239 scopus 로고    scopus 로고
    • Missing value estimation for DNA microarray gene expression data by Support Vector Regression imputation and orthogonal coding scheme
    • Wang, X., Li, A., Jiang, Z., et al. 2006. Missing value estimation for DNA microarray gene expression data by Support Vector Regression imputation and orthogonal coding scheme. BMC Bioinform. 7, 32.
    • (2006) BMC Bioinform , vol.7 , pp. 32
    • Wang, X.1    Li, A.2    Jiang, Z.3
  • 27
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformations for gene expression data
    • Yeung, K.Y., Fraley, C., Murua, A., et al. 2001. Model-based clustering and data transformations for gene expression data. Bioinformatics 17, 977-987.
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • Yeung, K.Y.1    Fraley, C.2    Murua, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.