-
1
-
-
0000326637
-
-
Nishikawa, T.; Nishida, J.; Ookura, K; Nishmura, S.-I.; Wada, S.; Kanno, T.; Shimomura, M. Mater. Sci. Eng., C 1999, 70, 141-146.
-
(1999)
Mater. Sci. Eng., C
, vol.70
, pp. 141-146
-
-
Nishikawa, T.1
Nishida, J.2
Ookura, K.3
Nishmura, S.-I.4
Wada, S.5
Kanno, T.6
Shimomura, M.7
-
2
-
-
33646500528
-
-
Stenzel, M. H.; Barner-Kowollik, C.; Davis, T. P. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 2363-2375.
-
(2006)
J. Polym. Sci., Part A: Polym. Chem
, vol.44
, pp. 2363-2375
-
-
Stenzel, M.H.1
Barner-Kowollik, C.2
Davis, T.P.3
-
4
-
-
0032166845
-
-
Hedrick, J. L.; Miller, R. D.; Hawker, C. J.; Carter, K. R.; Volksen, W.; Yoon, D. Y.; Trollsas, M. Adv. Mater. 1998, 10, 1049-1053.
-
(1998)
Adv. Mater
, vol.10
, pp. 1049-1053
-
-
Hedrick, J.L.1
Miller, R.D.2
Hawker, C.J.3
Carter, K.R.4
Volksen, W.5
Yoon, D.Y.6
Trollsas, M.7
-
5
-
-
0001661631
-
-
Gates, B.; Yin, Y.; Xia, Y. Chem. Mater. 1999, 77, 2827-2836.
-
(1999)
Chem. Mater
, vol.77
, pp. 2827-2836
-
-
Gates, B.1
Yin, Y.2
Xia, Y.3
-
7
-
-
0020310604
-
-
(b) Pusch, W.; Walch, A. Angew. Chem., Int. Ed. Engl. 1982, 21, 660-685.
-
(1982)
Angew. Chem., Int. Ed. Engl
, vol.21
, pp. 660-685
-
-
Pusch, W.1
Walch, A.2
-
10
-
-
0032508911
-
-
(b) Kuiper, S.; van Rijn, C. J. M.; Nijdam, W.; Elwenspoek, M. C. J. Membr. Sci. 1998, 150, 1-8.
-
(1998)
J. Membr. Sci
, vol.150
, pp. 1-8
-
-
Kuiper, S.1
van Rijn, C.J.M.2
Nijdam, W.3
Elwenspoek, M.C.4
-
11
-
-
0032319282
-
-
(c) van Rijn, C. J. M.; Veldhuis, G. J.; Kuiper, S. Nanotechnology 1998, 9, 343-345.
-
(1998)
Nanotechnology
, vol.9
, pp. 343-345
-
-
van Rijn, C.J.M.1
Veldhuis, G.J.2
Kuiper, S.3
-
12
-
-
4043091325
-
Nano and Micro Engineered Membrane Technology
-
Elsevier: Amsterdam
-
(d) van Rijn, C. J. M. Nano and Micro Engineered Membrane Technology; Membrane Science and Technology Series 10; Elsevier: Amsterdam, 2003.
-
(2003)
Membrane Science and Technology Series
, vol.10
-
-
van Rijn, C.J.M.1
-
13
-
-
61849089147
-
-
MEMS: Heidelberg, Germany
-
Yang, X.; Yang, J. M.; Wang, X.-Q.; Meng, E.; Tai, J.-C.; Ho, C.-M. Proceedings of the IEEE 11th Annual International Workshop; MEMS: Heidelberg, Germany, 1998..
-
(1998)
Proceedings of the IEEE 11th Annual International Workshop
-
-
Yang, X.1
Yang, J.M.2
Wang, X.-Q.3
Meng, E.4
Tai, J.-C.5
Ho, C.-M.6
-
14
-
-
0035124643
-
-
Kuiper, S.; van Wolferen, H.; van Rijn, C.; Nijdam, W.; Krijnen, G.; Elwenspoek, M. J. Micromech. Microeng. 2001, 11, 33-37.
-
(2001)
J. Micromech. Microeng
, vol.11
, pp. 33-37
-
-
Kuiper, S.1
van Wolferen, H.2
van Rijn, C.3
Nijdam, W.4
Krijnen, G.5
Elwenspoek, M.6
-
15
-
-
0033020195
-
-
Desai, T. A.; Hansford, D.; Ferrari, M. J. Membr. Sci. 1999, 759, 221.
-
(1999)
J. Membr. Sci
, vol.759
, pp. 221
-
-
Desai, T.A.1
Hansford, D.2
Ferrari, M.3
-
16
-
-
37649026033
-
-
Kawase, T.; Sirringhaus, H.; Friend, R. H.; Shimoda, T. Adv. Mater. 2001, 13, 1601-1605.
-
(2001)
Adv. Mater
, vol.13
, pp. 1601-1605
-
-
Kawase, T.1
Sirringhaus, H.2
Friend, R.H.3
Shimoda, T.4
-
17
-
-
33845355703
-
-
de Gans, B.-J.; Hoeppener, S.; Schubert, U. S. Adv. Mater. 2006, 18, 910-914.
-
(2006)
Adv. Mater
, vol.18
, pp. 910-914
-
-
de Gans, B.-J.1
Hoeppener, S.2
Schubert, U.S.3
-
18
-
-
17944369325
-
-
Bonaccurso, E.; Butt, H.-J.; Hankeln, B.; Niesenhaus, B.; Graf, K Appl. Phys. Lett. 2005, 86, 124101-1-124101-3.
-
(2005)
Appl. Phys. Lett
, vol.86
-
-
Bonaccurso, E.1
Butt, H.-J.2
Hankeln, B.3
Niesenhaus, B.4
Graf, K.5
-
20
-
-
36248940238
-
-
Khan, F.; Zhang,R.; Unciti-Broceta, A.; Díaz-Mochón, J. J.; Bradley, M. Adv. Mater., 2007, 79, 3524-3528.
-
(2007)
Adv. Mater
, vol.79
, pp. 3524-3528
-
-
Khan, F.1
Zhang, R.2
Unciti-Broceta, A.3
Díaz-Mochón, J.J.4
Bradley, M.5
-
21
-
-
2942730029
-
-
Gorand, Y.; Pauchard, L.; Calligari, G.; Hulin, J. P.; Allain, C. Langmuir 2004, 20, 5138-5140.
-
(2004)
Langmuir
, vol.20
, pp. 5138-5140
-
-
Gorand, Y.1
Pauchard, L.2
Calligari, G.3
Hulin, J.P.4
Allain, C.5
-
22
-
-
15944374297
-
-
Lee, M.; Dunn, J. C. Y.; Wu, B. M. Biomaterials 2005, 26, 4281-4289.
-
(2005)
Biomaterials
, vol.26
, pp. 4281-4289
-
-
Lee, M.1
Dunn, J.C.Y.2
Wu, B.M.3
-
23
-
-
14944339923
-
-
Pfister, A.; Walz, U.; Laib, A.; Múlhaupt, R. Macromol. Mater. Eng. 2005, 290,99-113.
-
(2005)
Macromol. Mater. Eng
, vol.290
, pp. 99-113
-
-
Pfister, A.1
Walz, U.2
Laib, A.3
Múlhaupt, R.4
-
24
-
-
61849155072
-
-
Butt, H.-J.; Graf, K.; Kappl, M. Physics and Chemistry of Interfaces,; Wiley-VCH : Weinheim, Germany, 2003; pp/0-12.
-
Butt, H.-J.; Graf, K.; Kappl, M. Physics and Chemistry of Interfaces,; Wiley-VCH : Weinheim, Germany, 2003; pp/0-12.
-
-
-
-
25
-
-
61849179060
-
-
To calculate the theoretical prediction, a value for the contact angle φ is needed. We assume that the moment the drops are printed their shape is consistent with the advancing contact angle air/aqueous phase/substrate. When the drops are covered with the polymer solution, the contact angle might change to the receding contact angle polymer solution/aqueous phase/substrate if this is larger than the original one obtained during printing or to the advancing contact angle polymer solution/aqueous phase/substrate if this is smaller than the original one. To be precise, this contact angle needs to be estimated for exactly the composition at which the polymer solution vitrifies or forms a gel. This is not available. Thus, as an approximation we choose to use the contact angle of chloroform/aqueous phase/substrate. The advancing contact angle of air/aqueous phase/substrate is between the advancing and the receding contact angle of chloroform/aqueous phase/substrate. We thus assume that t
-
To calculate the theoretical prediction, a value for the contact angle φ is needed. We assume that the moment the drops are printed their shape is consistent with the advancing contact angle air/aqueous phase/substrate. When the drops are covered with the polymer solution, the contact angle might change to the receding contact angle polymer solution/aqueous phase/substrate if this is larger than the original one obtained during printing or to the advancing contact angle polymer solution/aqueous phase/substrate if this is smaller than the original one. To be precise, this contact angle needs to be estimated for exactly the composition at which the polymer solution vitrifies or forms a gel. This is not available. Thus, as an approximation we choose to use the contact angle of chloroform/aqueous phase/substrate. The advancing contact angle of air/aqueous phase/substrate is between the advancing and the receding contact angle of chloroform/aqueous phase/substrate. We thus assume that the contact line is pinned during application of the polymer solution and thus use the advancing contact angle of air/aqueous phase/substrate for our calculations.
-
-
-
|