메뉴 건너뛰기




Volumn 10, Issue SUPPL. 1, 2009, Pages

A statistical framework for integrating two microarray data sets in differential expression analysis

Author keywords

[No Author keywords available]

Indexed keywords

DIFFERENTIAL EXPRESSIONS; EFFICIENT ANALYSIS; INTEGRATIVE ANALYSIS; MICROARRAY DATA SETS; MODEL MISSPECIFICATION; PARAMETRIC SOLUTIONS; SIMULATION STUDIES; STATISTICAL FRAMEWORK;

EID: 60849090744     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-10-S1-S23     Document Type: Conference Paper
Times cited : (9)

References (27)
  • 1
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary DNA microarray
    • 10.1126/science.270.5235.467 7569999
    • Schena M Shalon D Davis RW Brown PO Quantitative monitoring of gene expression patterns with a complementary DNA microarray Science 1995, 270:467-470. 10.1126/science.270.5235.467 7569999
    • (1995) Science , vol.270 , pp. 467-470
    • Schena, M.1    Shalon, D.2    Davis, R.W.3    Brown, P.O.4
  • 7
    • 0842331569 scopus 로고    scopus 로고
    • Gene expression profiles define a key checkpoint for type 1 diabetes in NOD mice
    • 10.2337/diabetes.53.2.366 14747287
    • Eckenrode SE Ruan Q Yang P Zheng W Mclndoe RA She JX Gene expression profiles define a key checkpoint for type 1 diabetes in NOD mice Diabetes 2004, 53:366-375. 10.2337/diabetes.53.2.366 14747287
    • (2004) Diabetes , vol.53 , pp. 366-375
    • Eckenrode, S.E.1    Ruan, Q.2    Yang, P.3    Zheng, W.4    Mclndoe, R.A.5    She, J.X.6
  • 9
    • 4944232237 scopus 로고    scopus 로고
    • Combining multiple microarray studies and modeling interstudy variation
    • 10.1093/bioinformatics/btg1010
    • Choi JK Yu U Kim S Yoo OJ Combining multiple microarray studies and modeling interstudy variation Bioinformatics 2003, 19(Supplement 1):i84-90. 10.1093/bioinformatics/btg1010
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 1
    • Choi, J.K.1    Yu, U.2    Kim, S.3    Yoo, O.J.4
  • 10
    • 27544492493 scopus 로고    scopus 로고
    • Robust prostate cancer marker genes emerge from direct integration of inter-study microarray data
    • 10.1093/bioinformatics/bti647 16131522
    • Xu L Tan AC Naiman DQ Geman D Winslow RL Robust prostate cancer marker genes emerge from direct integration of inter-study microarray data Bioinformatics 2005, 21:3905-3911. 10.1093/bioinformatics/bti647 16131522
    • (2005) Bioinformatics , vol.21 , pp. 3905-3911
    • Xu, L.1    Tan, A.C.2    Naiman, D.Q.3    Geman, D.4    Winslow, R.L.5
  • 11
    • 33747017793 scopus 로고    scopus 로고
    • Bayesian models for pooling microarray studies with multiple sources of replications
    • 1534062 16677390 10.1186/1471-2105-7-247
    • Conlon EM Song JJ Liu JS Bayesian models for pooling microarray studies with multiple sources of replications BMC Bioinformatics 2006, 7:247. 1534062 16677390 10.1186/1471-2105-7-247
    • (2006) BMC Bioinformatics , vol.7 , pp. 247
    • Conlon, E.M.1    Song, J.J.2    Liu, J.S.3
  • 12
    • 38849106351 scopus 로고    scopus 로고
    • A comparison of meta-analysis methods for detecting differentially expressed genes in microarray experiments
    • 10.1093/bioinformatics/btm620 18204063
    • Hong F R RB A comparison of meta-analysis methods for detecting differentially expressed genes in microarray experiments Bioinformatics 2008, 24:374-382. 10.1093/bioinformatics/btm620 18204063
    • (2008) Bioinformatics , vol.24 , pp. 374-382
    • Hong, F.R.R.B.1
  • 13
    • 41749099668 scopus 로고    scopus 로고
    • Merging microarray data from separate breast cancer studies provides a robust prognostic test
    • 2409450 18304324 10.1186/1471-2105-9-125
    • Xu L Tan AC Winslow RL Geman D Merging microarray data from separate breast cancer studies provides a robust prognostic test BMC Bioinformatics 2008, 9:125. 2409450 18304324 10.1186/1471-2105-9-125
    • (2008) BMC Bioinformatics , vol.9 , pp. 125
    • Xu, L.1    Tan, A.C.2    Winslow, R.L.3    Geman, D.4
  • 14
    • 50649121884 scopus 로고    scopus 로고
    • MAID: An effect size based model for microarray data integration across laboratories and platforms
    • 2483727 18616827 10.1186/1471-2105-9-305
    • Borozan I Chen L Paeper B Heathcote JE Edwards AM Katze M Zhang Z McGilvray ID MAID: An effect size based model for microarray data integration across laboratories and platforms BMC Bioinformatics 2008, 9:305. 2483727 18616827 10.1186/1471-2105-9-305
    • (2008) BMC Bioinformatics , vol.9 , pp. 305
    • Borozan, I.1    Chen, L.2    Paeper, B.3    Heathcote, J.E.4    Edwards, A.M.5    Katze, M.6    Zhang, Z.7    McGilvray, I.D.8
  • 15
    • 26444563353 scopus 로고    scopus 로고
    • List of lists-annotated (LOLA): A database for annotation and comparison of published microarray gene lists
    • 10.1016/j.gene.2005.07.008 16140476
    • Cahan P Ahmad AM Burke H Fu S Lai Y Florea L Dharker N Kobrinski T Kale P McCaffrey TA List of lists-annotated (LOLA): A database for annotation and comparison of published microarray gene lists Gene 2005, 360:78-82. 10.1016/j.gene.2005.07.008 16140476
    • (2005) Gene , vol.360 , pp. 78-82
    • Cahan, P.1    Ahmad, A.M.2    Burke, H.3    Fu, S.4    Lai, Y.5    Florea, L.6    Dharker, N.7    Kobrinski, T.8    Kale, P.9    McCaffrey, T.A.10
  • 16
    • 33645825183 scopus 로고    scopus 로고
    • Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer
    • 10.1073/pnas.0601231103
    • Ein-Dor L Zuk O Domany E Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer Proceedings of the National Academy of Sciences USA 2006, 103:5923-5928. 10.1073/ pnas.0601231103
    • (2006) Proceedings of the National Academy of Sciences USA , vol.103 , pp. 5923-5928
    • Ein-Dor, L.1    Zuk, O.2    Domany, E.3
  • 17
    • 33847162014 scopus 로고    scopus 로고
    • A methodology for global validation of microarray experiments
    • 1539027 16822306 10.1186/1471-2105-7-333
    • Miron M Woody OZ Marcil A Murie C Sladek R Nadon R A methodology for global validation of microarray experiments BMC Bioinformatics 2006, 7:333. 1539027 16822306 10.1186/1471-2105-7-333
    • (2006) BMC Bioinformatics , vol.7 , pp. 333
    • Miron, M.1    Woody, O.Z.2    Marcil, A.3    Murie, C.4    Sladek, R.5    Nadon, R.6
  • 18
    • 34447345702 scopus 로고    scopus 로고
    • A mixture model approach to the tests of concordance and discordance between two large scale experiments with two-sample groups
    • 10.1093/bioinformatics/btm103 17384018
    • Lai Y Adam BL Podolsky R She JX A mixture model approach to the tests of concordance and discordance between two large scale experiments with two-sample groups Bioinformatics 2007, 23:1243-1250. 10.1093/ bioinformatics/btm103 17384018
    • (2007) Bioinformatics , vol.23 , pp. 1243-1250
    • Lai, Y.1    Adam, B.L.2    Podolsky, R.3    She, J.X.4
  • 20
    • 24144445705 scopus 로고    scopus 로고
    • Improved statistical tests for differential gene expression by shrinking variance components estimates
    • 10.1093/biostatistics/kxh018 15618528
    • Cui X Hwang JTG Qiu J Blades NJ Churchill GA Improved statistical tests for differential gene expression by shrinking variance components estimates Biostatistics 2005, 6:59-75. 10.1093/biostatistics/kxh018 15618528
    • (2005) Biostatistics , vol.6 , pp. 59-75
    • Cui, X.1    Hwang, J.T.G.2    Qiu, J.3    Blades, N.J.4    Churchill, G.A.5
  • 21
    • 0043203327 scopus 로고    scopus 로고
    • Multiple hypothesis testing in microarray experiments
    • 10.1214/ss/1056397487
    • Dudoit S Shaffer JP Boldrick JC Multiple hypothesis testing in microarray experiments Statistical Science 2003, 18:71-103. 10.1214/ss/ 1056397487
    • (2003) Statistical Science , vol.18 , pp. 71-103
    • Dudoit, S.1    Shaffer, J.P.2    Boldrick, J.C.3
  • 22
    • 33745606461 scopus 로고    scopus 로고
    • A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays
    • 10.1093/bioinformatics/btl148 16632494
    • McLachlan GJ Bean RW Jones LB A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays Bioinformatics 2006, 22:1608-1615. 10.1093/bioinformatics/ btl148 16632494
    • (2006) Bioinformatics , vol.22 , pp. 1608-1615
    • McLachlan, G.J.1    Bean, R.W.2    Jones, L.B.3
  • 24
    • 0023570352 scopus 로고
    • On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture
    • 10.2307/2347790
    • McLachlan GJ On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture Applied Statistics 1987, 36:318-324. 10.2307/2347790
    • (1987) Applied Statistics , vol.36 , pp. 318-324
    • McLachlan, G.J.1
  • 25
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini Y Hochberg Y Controlling the false discovery rate: A practical and powerful approach to multiple testing Journal of the Royal Statistical Society, Series B 1995, 57:289-300.
    • (1995) Journal of the Royal Statistical Society, Series B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 27
    • 84874647831 scopus 로고    scopus 로고
    • Web link for R-code http://home.gwu.edu/~ylai/research/Concordance
    • Web Link for R-code


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.