메뉴 건너뛰기




Volumn , Issue , 2008, Pages 224-231

Probabilistic mixed topological map for categorical and continuous data

Author keywords

[No Author keywords available]

Indexed keywords

MAXIMUM LIKELIHOOD; ROBOT LEARNING;

EID: 60749091854     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICMLA.2008.13     Document Type: Conference Paper
Times cited : (3)

References (22)
  • 1
    • 34447330447 scopus 로고    scopus 로고
    • A k-mean clustering algorithm for mixed numeric and categorical data
    • A. Ahmad and L. Dey. A k-mean clustering algorithm for mixed numeric and categorical data. Data Knowl. Eng., 63 (2):503-527, 2007.
    • (2007) Data Knowl. Eng , vol.63 , Issue.2 , pp. 503-527
    • Ahmad, A.1    Dey, L.2
  • 2
    • 38149057321 scopus 로고    scopus 로고
    • Hierarchical density-based clustering of categorical data and a simplification
    • B. Andreopoulos, A. An, and X. Wang. Hierarchical density-based clustering of categorical data and a simplification. In PAKDD, pages 11-22, 2007.
    • (2007) PAKDD , pp. 11-22
    • Andreopoulos, B.1    An, A.2    Wang, X.3
  • 4
    • 60749130767 scopus 로고    scopus 로고
    • A. Asuncion and D. Newman. UCI machine learning repository. http://www.ics.uci.edu/~mlearn/MLRepository.html, 2007.
    • A. Asuncion and D. Newman. UCI machine learning repository. http://www.ics.uci.edu/~mlearn/MLRepository.html, 2007.
  • 5
    • 0028509672 scopus 로고
    • Multi-modular and hybrid connectionist approach for pattern recognition
    • Y. Bennani. Multi-modular and hybrid connectionist approach for pattern recognition. International Journal of Neural Systems, 5 (3):207-216, 1994.
    • (1994) International Journal of Neural Systems , vol.5 , Issue.3 , pp. 207-216
    • Bennani, Y.1
  • 6
    • 0347963789 scopus 로고    scopus 로고
    • Williams. GTM: The generative topographic mapping
    • C. M. Bishop, M. Svensén, and C. K. I.Williams. GTM: The generative topographic mapping. Neural Comput, 10 (1):215-234, 1998.
    • (1998) Neural Comput , vol.10 , Issue.1 , pp. 215-234
    • Bishop, C.M.1    Svensén, M.2    Williams, C.K.I.3
  • 7
    • 0037209490 scopus 로고    scopus 로고
    • Em procedures using mean field-like approximations for markov model-based image segmentation
    • G. Celeux, F. Forbes, and N. Payrard. Em procedures using mean field-like approximations for markov model-based image segmentation. Pattern Recognition, 1 (36): 131-144, 2003.
    • (2003) Pattern Recognition , vol.1 , Issue.36 , pp. 131-144
    • Celeux, G.1    Forbes, F.2    Payrard, N.3
  • 8
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the em algorithm. Roy. Statist. Soc, 39 (1): 1-38, 1977.
    • (1977) Roy. Statist. Soc , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 9
    • 0035505614 scopus 로고    scopus 로고
    • The topographic organisation and visualisation of binary data using mutivariate-bernoulli latent variable models
    • M. Girolami. The topographic organisation and visualisation of binary data using mutivariate-bernoulli latent variable models. I.E.E.E Transactions on Neural Networks, 12 (6): 1367-1374, 2001.
    • (2001) I.E.E.E Transactions on Neural Networks , vol.12 , Issue.6 , pp. 1367-1374
    • Girolami, M.1
  • 10
    • 0344972928 scopus 로고    scopus 로고
    • Self-organizing maps: Generalizations and new optimization techniques
    • T. Graepel, M. Burger, and K. Obermayer. Self-organizing maps: generalizations and new optimization techniques. Neurocomputing, 21:173-190, 1998.
    • (1998) Neurocomputing , vol.21 , pp. 173-190
    • Graepel, T.1    Burger, M.2    Obermayer, K.3
  • 11
    • 0035506768 scopus 로고    scopus 로고
    • Self-organizing maps, vector quantization, and mixture modeling
    • T. Heskes. Self-organizing maps, vector quantization, and mixture modeling. IEEE Trans. Neural Networks, 12:1299-1305, 2001.
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 1299-1305
    • Heskes, T.1
  • 12
    • 0033442289 scopus 로고    scopus 로고
    • Mixture model clustering using the multimix program
    • L. Hunt and M. Jorgensen. Mixture model clustering using the multimix program. Austral. & New Zealand J Statistics, 41 (2): 153-171, 1999.
    • (1999) Austral. & New Zealand J Statistics , vol.41 , Issue.2 , pp. 153-171
    • Hunt, L.1    Jorgensen, M.2
  • 14
    • 33847320688 scopus 로고    scopus 로고
    • Speed-up for the expectation-maximization algorithm for clustering categorical data
    • April
    • F.-X. Jollois and M. Nadif. Speed-up for the expectation-maximization algorithm for clustering categorical data. Journal of Global Optimization, 37 (4): 513-525, April 2007.
    • (2007) Journal of Global Optimization , vol.37 , Issue.4 , pp. 513-525
    • Jollois, F.-X.1    Nadif, M.2
  • 15
    • 60749093040 scopus 로고    scopus 로고
    • M. Jorgensen and L. Hunt. Mixture model clustering of data sets with categorical and continuous variables. In E. D. L. D. K. B. K. J. J. O. W. Scientific, editor, Information, Statistics and Induction in Science ISIS 96, pages 375-384, Australia, 1996. MIT Press.
    • M. Jorgensen and L. Hunt. Mixture model clustering of data sets with categorical and continuous variables. In E. D. L. D. K. B. K. J. J. O. W. Scientific, editor, Information, Statistics and Induction in Science ISIS 96, pages 375-384, Australia, 1996. MIT Press.
  • 16
    • 0035421180 scopus 로고    scopus 로고
    • A combined latent class and trait model for the analysis and visualization of discrete data
    • A. Kaban and M. Girolami. A combined latent class and trait model for the analysis and visualization of discrete data. IEEE Trans. Pattern Anal. Much. Intell, 23:859-872, 2001.
    • (2001) IEEE Trans. Pattern Anal. Much. Intell , vol.23 , pp. 859-872
    • Kaban, A.1    Girolami, M.2
  • 21
    • 0000439329 scopus 로고
    • A bayesian analysis of self-organizing maps
    • S. P. Luttrel. A bayesian analysis of self-organizing maps. Neural Computing, 6:767-794, 1994.
    • (1994) Neural Computing , vol.6 , pp. 767-794
    • Luttrel, S.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.