메뉴 건너뛰기




Volumn , Issue , 2007, Pages 631-636

BeSOM: Bernoulli on self-organizing map

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BOOLEAN FUNCTIONS; COMPUTER NETWORKS; CONFORMAL MAPPING; FLOW OF SOLIDS; LEARNING ALGORITHMS; LEARNING SYSTEMS; NEURAL NETWORKS; PROBABILITY; PROBABILITY DISTRIBUTIONS; PROGRAMMING THEORY; RISK ASSESSMENT;

EID: 51749089534     PISSN: 10987576     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2007.4371030     Document Type: Conference Paper
Times cited : (22)

References (24)
  • 1
    • 51749107816 scopus 로고    scopus 로고
    • F. Anouar, F. Badran, and S. Thiria. Self-organizing map, a probabilistic approach. In Proceedings of WSOM'97, Workshop on Self-Organizing Maps, Espoo, Finland, June 4-6, pages 339-344. Helsinki University of Technology, Neural Networks Research Centre, Espoo, Finland, 1997.
    • F. Anouar, F. Badran, and S. Thiria. Self-organizing map, a probabilistic approach. In Proceedings of WSOM'97, Workshop on Self-Organizing Maps, Espoo, Finland, June 4-6, pages 339-344. Helsinki University of Technology, Neural Networks Research Centre, Espoo, Finland, 1997.
  • 2
    • 51749113860 scopus 로고    scopus 로고
    • M. Lebbah, S. Thiria, F. Badran, Topological Map for Binary Data, Topological Map for Binary Data, ESANN 2000, Bruges, April 26-27-28, pp. 267-272. 2000. Proceedings.
    • M. Lebbah, S. Thiria, F. Badran, Topological Map for Binary Data, Topological Map for Binary Data, ESANN 2000, Bruges, April 26-27-28, pp. 267-272. 2000. Proceedings.
  • 4
    • 0347963789 scopus 로고    scopus 로고
    • GTM: The generative topographic mapping
    • C. M. Bishop, M. Svensén, and C. K. I.Williams, "GTM: The generative topographic mapping," Neural Comput., vol. 10, no. 1, p 215-234. 1998.
    • (1998) Neural Comput , vol.10 , Issue.1 , pp. 215-234
    • Bishop, C.M.1    Svensén, M.2    Williams, C.K.I.3
  • 5
    • 0037209490 scopus 로고    scopus 로고
    • EM procedures using mean field-like approximations for Markov model-based image segmentation
    • G. Celeux, F. Forbes, N. Payrard, EM procedures using mean field-like approximations for Markov model-based image segmentation, Pattern Recognition 36, pp. 131-144. 2003.
    • (2003) Pattern Recognition , vol.36 , pp. 131-144
    • Celeux, G.1    Forbes, F.2    Payrard, N.3
  • 6
    • 51749105281 scopus 로고    scopus 로고
    • G.Govaert. Classification binaire et modles. Revue de Statistique Applique, 38 no. 1 p. 67-81.1990.
    • G.Govaert. Classification binaire et modles. Revue de Statistique Applique, 38 no. 1 p. 67-81.1990.
  • 7
    • 0031223058 scopus 로고    scopus 로고
    • Clustering for binary data and mixture models : Choice of the model
    • M. Nadif and G. Govaert. Clustering for binary data and mixture models : Choice of the model. Applied Stochastic Models and Data Analysis, 13 :pp.269-278.1998.
    • (1998) Applied Stochastic Models and Data Analysis , vol.13 , pp. 269-278
    • Nadif, M.1    Govaert, G.2
  • 8
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Roy. Statist. Soc. 39 (1), pp.1-38. 1977.
    • (1977) J. Roy. Statist. Soc , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 10
    • 0035421180 scopus 로고    scopus 로고
    • A combined latent class and trait model for the analysis and visualization of discrete data
    • A. Kaban, M. Girolami, A combined latent class and trait model for the analysis and visualization of discrete data, IEEE Trans. Pattern Anal. Mach. Intell. 23, pp. 859-872. 2001.
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell , vol.23 , pp. 859-872
    • Kaban, A.1    Girolami, M.2
  • 11
    • 0035505614 scopus 로고    scopus 로고
    • M. Girolami, The Topographic Organisation and Visualisation of Binary Data using Mutivariate-Bernoulli Latent Variable Models. I.E.E.E Transactions on Neural Networks. 12(6). pp 1367-1374. 2001.
    • M. Girolami, The Topographic Organisation and Visualisation of Binary Data using Mutivariate-Bernoulli Latent Variable Models. I.E.E.E Transactions on Neural Networks. 12(6). pp 1367-1374. 2001.
  • 12
    • 84899007505 scopus 로고    scopus 로고
    • Probabilistic visualization of high-dimensional binary data
    • M. E. Tipping, Probabilistic visualization of high-dimensional binary data, Advances Neural Inform. Processing Syst., pp. 592-598. 1998.
    • (1998) Advances Neural Inform. Processing Syst , pp. 592-598
    • Tipping, M.E.1
  • 13
    • 51749112105 scopus 로고    scopus 로고
    • S. Ibbou, M. Cottrell, Multiple correspondance Analysis crosstabulation matrix using the Kohonen algorithm. In verlaeysen, M. Editor proc of ESANN'95, pages 27-32. Dfacto Bruxelles.1995.
    • S. Ibbou, M. Cottrell, Multiple correspondance Analysis crosstabulation matrix using the Kohonen algorithm. In verlaeysen, M. Editor proc of ESANN'95, pages 27-32. Dfacto Bruxelles.1995.
  • 14
    • 0344972929 scopus 로고    scopus 로고
    • WEBSOM-self-organizing maps of document collections
    • S. Kaski, T. Honkela, K. Lagus, and T. Kohonen. WEBSOM-self-organizing maps of document collections. Neurocomputing, volume 21, pages 101-117. 1998.
    • (1998) Neurocomputing , vol.21 , pp. 101-117
    • Kaski, S.1    Honkela, T.2    Lagus, K.3    Kohonen, T.4
  • 15
    • 0036825530 scopus 로고    scopus 로고
    • On the generative probability density model in the self-organizing map
    • T. Kostiainen, J. Lampinen, On the generative probability density model in the self-organizing map, Neurocomputing 48, pp. 217-228. 2002.
    • (2002) Neurocomputing , vol.48 , pp. 217-228
    • Kostiainen, T.1    Lampinen, J.2
  • 19
    • 10844272778 scopus 로고    scopus 로고
    • Competitive Learning for Binary Data
    • septembre 2-4. Springer Verlag
    • F. Leich, A. Weingessel, E. Dimitriadou. Competitive Learning for Binary Data. Proc of ICANN'98, septembre 2-4. Springer Verlag. 1998.
    • (1998) Proc of ICANN'98
    • Leich, F.1    Weingessel, A.2    Dimitriadou, E.3
  • 20
    • 0000439329 scopus 로고
    • A Bayesian Ananlysis of Self-Organizing Maps
    • S. P Luttrel . A Bayesian Ananlysis of Self-Organizing Maps, Neural Computing vol 6, pp. 767-794. 1994.
    • (1994) Neural Computing , vol.6 , pp. 767-794
    • Luttrel, S.P.1
  • 21
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • T. Hofmann, Unsupervised learning by probabilistic latent semantic analysis. Machine Learning, 42:177-196. 2001.
    • (2001) Machine Learning , vol.42 , pp. 177-196
    • Hofmann, T.1
  • 22
    • 0344972928 scopus 로고    scopus 로고
    • Self-organizing maps: Generalizations and new optimization techniques
    • T. Graepel, M. Burger, K. Obermayer, Self-organizing maps: generalizations and new optimization techniques, Neurocomputing 21, pp.173-190.1998.
    • (1998) Neurocomputing , vol.21 , pp. 173-190
    • Graepel, T.1    Burger, M.2    Obermayer, K.3
  • 23
    • 0035506768 scopus 로고    scopus 로고
    • Self-organizing maps, vector quantization, and mixture modeling
    • T. Heskes, Self-organizing maps, vector quantization, and mixture modeling, IEEE Trans. NeuralNetworks 12, pp. 1299-1305. 2001.
    • (2001) IEEE Trans. NeuralNetworks , vol.12 , pp. 1299-1305
    • Heskes, T.1
  • 24
    • 0003408496 scopus 로고    scopus 로고
    • UCI repository of machine learning databases
    • Technical report. University of California, Department of information and Computer science, Irvine, CA, available at
    • C.L. Blake and C.L Merz "UCI repository of machine learning databases". Technical report. University of California, Department of information and Computer science, Irvine, CA, available at: ftp://ftp.ics. uci.edu/pub/machine-learning-databases. 1998.
    • (1998)
    • Blake, C.L.1    Merz, C.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.