-
3
-
-
29844456001
-
-
Del Guerzo A., Olive A.G.L., Reichwagen J., Hopf H., and Desvergne J.P. J. Am. Chem. Soc. 127 (2005) 17984
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 17984
-
-
Del Guerzo, A.1
Olive, A.G.L.2
Reichwagen, J.3
Hopf, H.4
Desvergne, J.P.5
-
4
-
-
33646720105
-
-
Röger C., Müller M.G., Lysetska M., Miloslavina Y., Holzwarth A.R., and Würthner F. J. Am. Chem. Soc. 128 (2006) 6542
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 6542
-
-
Röger, C.1
Müller, M.G.2
Lysetska, M.3
Miloslavina, Y.4
Holzwarth, A.R.5
Würthner, F.6
-
5
-
-
20844451184
-
-
Sautter A., Kaletaş B.K., Schmid D.G., Dobrawa R., Zimine M., Jung G., van Stokkum I.H.M., De Cola L., Williams R.M., and Würthner F. J. Am. Chem. Soc. 127 (2005) 6719
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 6719
-
-
Sautter, A.1
Kaletaş, B.K.2
Schmid, D.G.3
Dobrawa, R.4
Zimine, M.5
Jung, G.6
van Stokkum, I.H.M.7
De Cola, L.8
Williams, R.M.9
Würthner, F.10
-
6
-
-
33646679295
-
-
Hoeben F.J.M., Shklyarevskiy I.O., Pouderoijen M.J., Engelkamp H., Schenning A.P.H.J., Christianen P.C.M., Maan J.C., and Meijer E.W. Angew. Chem., Int. Ed. 45 (2006) 1232
-
(2006)
Angew. Chem., Int. Ed.
, vol.45
, pp. 1232
-
-
Hoeben, F.J.M.1
Shklyarevskiy, I.O.2
Pouderoijen, M.J.3
Engelkamp, H.4
Schenning, A.P.H.J.5
Christianen, P.C.M.6
Maan, J.C.7
Meijer, E.W.8
-
9
-
-
34548251814
-
-
Ajayaghosh A., Praveen V.K., Vijayakumar C., and George S.J. Angew. Chem., Int. Ed. 46 (2007) 6260
-
(2007)
Angew. Chem., Int. Ed.
, vol.46
, pp. 6260
-
-
Ajayaghosh, A.1
Praveen, V.K.2
Vijayakumar, C.3
George, S.J.4
-
11
-
-
33646071883
-
-
Hajjaj F., Yoon Z.S., Yoon M.-C., Park J., Satake A., Kim D., and Kobuke Y. J. Am. Chem. Soc. 128 (2006) 4612
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 4612
-
-
Hajjaj, F.1
Yoon, Z.S.2
Yoon, M.-C.3
Park, J.4
Satake, A.5
Kim, D.6
Kobuke, Y.7
-
13
-
-
1442300793
-
-
Sasaki K., Nakagawa H., Zhang X., Sakurai S., Kano K., and Kuroda Y. Chem. Commun. (2004) 408
-
(2004)
Chem. Commun.
, pp. 408
-
-
Sasaki, K.1
Nakagawa, H.2
Zhang, X.3
Sakurai, S.4
Kano, K.5
Kuroda, Y.6
-
15
-
-
0035902455
-
-
Vasil'ev S., Orth P., Zouni A., Owens T.G., and Bruce D. Proc. Natl. Acad. Sci. U.S.A. 98 (2001) 8602
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, pp. 8602
-
-
Vasil'ev, S.1
Orth, P.2
Zouni, A.3
Owens, T.G.4
Bruce, D.5
-
17
-
-
0029637583
-
-
McDermott G., Prince S.M., Freer A.A., Hawthornthwaite-Lawless A.M., Papiz M.Z., Cogdell R.J., and Isaacs N.W. Nature 374 (1995) 517
-
(1995)
Nature
, vol.374
, pp. 517
-
-
McDermott, G.1
Prince, S.M.2
Freer, A.A.3
Hawthornthwaite-Lawless, A.M.4
Papiz, M.Z.5
Cogdell, R.J.6
Isaacs, N.W.7
-
18
-
-
53549116211
-
-
Giansante C., Ceroni P., Balzani V., and Vögtle F. Angew. Chem., Int. Ed. 47 (2008) 5422
-
(2008)
Angew. Chem., Int. Ed.
, vol.47
, pp. 5422
-
-
Giansante, C.1
Ceroni, P.2
Balzani, V.3
Vögtle, F.4
-
20
-
-
0346493121
-
-
Choi M.-S., Yamazaki T., Yamazaki I., and Aida T. Angew. Chem., Int. Ed. 43 (2004) 150
-
(2004)
Angew. Chem., Int. Ed.
, vol.43
, pp. 150
-
-
Choi, M.-S.1
Yamazaki, T.2
Yamazaki, I.3
Aida, T.4
-
22
-
-
33644755441
-
-
Takahashi M., Morimoto H., Suzuki Y., Yamashita M., Kawai H., Sei Y., and Yamaguchi K. Tetrahedron 62 (2006) 3065
-
(2006)
Tetrahedron
, vol.62
, pp. 3065
-
-
Takahashi, M.1
Morimoto, H.2
Suzuki, Y.3
Yamashita, M.4
Kawai, H.5
Sei, Y.6
Yamaguchi, K.7
-
23
-
-
8444230432
-
-
Takahashi M., Morimoto H., Suzuki Y., Odagi T., Yamashita M., and Kawai H. Tetrahedron 60 (2004) 11771
-
(2004)
Tetrahedron
, vol.60
, pp. 11771
-
-
Takahashi, M.1
Morimoto, H.2
Suzuki, Y.3
Odagi, T.4
Yamashita, M.5
Kawai, H.6
-
24
-
-
0037450972
-
-
Takahashi M., Odagi T., Tomita H., Oshikawa T., and Yamashita M. Tetrahedron Lett. 44 (2003) 2455
-
(2003)
Tetrahedron Lett.
, vol.44
, pp. 2455
-
-
Takahashi, M.1
Odagi, T.2
Tomita, H.3
Oshikawa, T.4
Yamashita, M.5
-
26
-
-
0036311042
-
-
Beckers E.H.A., van Hal P.A., Schenning A.P.H.J., El-ghayoury A., Peeters E., Rispens M.T., Hummelen J.C., Meijer E.W., and Janssen R.A.J. J. Mater. Chem. 12 (2002) 2054
-
(2002)
J. Mater. Chem.
, vol.12
, pp. 2054
-
-
Beckers, E.H.A.1
van Hal, P.A.2
Schenning, A.P.H.J.3
El-ghayoury, A.4
Peeters, E.5
Rispens, M.T.6
Hummelen, J.C.7
Meijer, E.W.8
Janssen, R.A.J.9
-
29
-
-
33646416471
-
-
Wolak M.A., Melinger J.S., Lane P.A., Palilis L.C., Landis C.A., Delcamp J., Anthony J.E., and Kafafi Z.H. J. Phys. Chem. B 110 (2006) 7928
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 7928
-
-
Wolak, M.A.1
Melinger, J.S.2
Lane, P.A.3
Palilis, L.C.4
Landis, C.A.5
Delcamp, J.6
Anthony, J.E.7
Kafafi, Z.H.8
-
31
-
-
33745017393
-
-
Praveen V.K., George S.J., Varghese R., Vijayakumar C., and Ajayaghosh A. J. Am. Chem. Soc. 128 (2006) 7542
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 7542
-
-
Praveen, V.K.1
George, S.J.2
Varghese, R.3
Vijayakumar, C.4
Ajayaghosh, A.5
-
32
-
-
33744930333
-
-
Ajayaghosh A., Vijayakumar C., Praveen V.K., Babu S.S., and Varghese R. J. Am. Chem. Soc. 128 (2006) 7174
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 7174
-
-
Ajayaghosh, A.1
Vijayakumar, C.2
Praveen, V.K.3
Babu, S.S.4
Varghese, R.5
-
34
-
-
33845530927
-
-
Mondal S.K., Ghosh S., Sahu K., Mandal U., and Bhattacharyya K. J. Chem. Phys. 125 (2006) 224710
-
(2006)
J. Chem. Phys.
, vol.125
, pp. 224710
-
-
Mondal, S.K.1
Ghosh, S.2
Sahu, K.3
Mandal, U.4
Bhattacharyya, K.5
-
35
-
-
38349166716
-
-
Cringus D., Bakulin A., Lindner J., Vöhringer P., Pshenichnikov M.S., and Wiersma D.A. J. Phys. Chem. B 111 (2007) 14193
-
(2007)
J. Phys. Chem. B
, vol.111
, pp. 14193
-
-
Cringus, D.1
Bakulin, A.2
Lindner, J.3
Vöhringer, P.4
Pshenichnikov, M.S.5
Wiersma, D.A.6
-
37
-
-
34250793441
-
-
Chen C.-Y., Tian Y., Cheng Y.-J., Young A.C., Ka J.-W., and Jen A.K.-Y. J. Am. Chem. Soc. 129 (2007) 7220
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 7220
-
-
Chen, C.-Y.1
Tian, Y.2
Cheng, Y.-J.3
Young, A.C.4
Ka, J.-W.5
Jen, A.K.-Y.6
-
38
-
-
60549087113
-
-
in press. doi:10.1016/j.jphotochem.2008.12.022
-
Takahashi, M.; Ichihashi, Y.; Nishizawa, N.; Ohno, S.; Fujita, N.; Yamashita, M.; Sengoku, T.; Yoda, H. J. Photochem. Photobiol. A: Chem., in press. doi:10.1016/j.jphotochem.2008.12.022.
-
J. Photochem. Photobiol. A: Chem
-
-
Takahashi, M.1
Ichihashi, Y.2
Nishizawa, N.3
Ohno, S.4
Fujita, N.5
Yamashita, M.6
Sengoku, T.7
Yoda, H.8
-
41
-
-
33845462201
-
-
Takahashi M., Suzuki Y., Ichihashi Y., Yamashita M., and Kawai H. Tetrahedron Lett. 48 (2007) 357
-
(2007)
Tetrahedron Lett.
, vol.48
, pp. 357
-
-
Takahashi, M.1
Suzuki, Y.2
Ichihashi, Y.3
Yamashita, M.4
Kawai, H.5
-
42
-
-
60649104030
-
-
note
-
0 value of 50 as a representative self-assembly condition.
-
-
-
-
43
-
-
60649099207
-
-
note
-
We previously demonstrated that nanoscopic-sized reverse micelles preparaed from the related analogue 1 achieved either efficient intramolecular energy transfer or collisional dissipation due to intermolecular chromophore interactions.
-
-
-
-
44
-
-
60649110074
-
-
note
-
Possibilities of energy transfer between the self-assembled aggregates can be ruled out on the basis of the experimental conditions employing sufficiently dilute solutions of the analytes.
-
-
-
-
45
-
-
40349100439
-
-
Takahashi M., Morimoto H., Miyake K., Kawai H., Sei Y., Yamaguchi K., Yamashita M., Sengokua T., and Yoda H. New J. Chem. 32 (2008) 547
-
(2008)
New J. Chem.
, vol.32
, pp. 547
-
-
Takahashi, M.1
Morimoto, H.2
Miyake, K.3
Kawai, H.4
Sei, Y.5
Yamaguchi, K.6
Yamashita, M.7
Sengokua, T.8
Yoda, H.9
-
46
-
-
33746279359
-
-
Takahashi M., Morimoto H., Miyake K., Yamashita M., Kawai H., Sei Y., and Yamaguchi K. Chem. Commun. (2006) 3084
-
(2006)
Chem. Commun.
, pp. 3084
-
-
Takahashi, M.1
Morimoto, H.2
Miyake, K.3
Yamashita, M.4
Kawai, H.5
Sei, Y.6
Yamaguchi, K.7
-
47
-
-
33746276032
-
-
Takahashi M., Morimoto H., Suzuki Y., Yamashita M., and Kawai H. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.). 45 (2004) 959
-
(2004)
Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.).
, vol.45
, pp. 959
-
-
Takahashi, M.1
Morimoto, H.2
Suzuki, Y.3
Yamashita, M.4
Kawai, H.5
-
48
-
-
60649091125
-
-
note
-
In order to gain further insight into the mechanism of the energy transfer processes, fluorescence lifetime studies on the reverse micelles are needed. However, our attempts to obtain the fluorescence lifetime data (τ) failed due to limited time resolution of the experimental setup.
-
-
-
-
49
-
-
58149159445
-
-
-1) was estimated using the reported fluorescence lifetimes τ (1.4 ns (14%), 4.3 ns (23%) and 60.5 ns (63%)) of the anthracene aggregate system in micelles, which was closely related to the donor-based reverse micelles prepared from 2. As for this anthracene aggregate system, see:
-
-1) was estimated using the reported fluorescence lifetimes τ (1.4 ns (14%), 4.3 ns (23%) and 60.5 ns (63%)) of the anthracene aggregate system in micelles, which was closely related to the donor-based reverse micelles prepared from 2. As for this anthracene aggregate system, see:. Chen K.-H., Yang J.-S., Hwang C.-Y., and Fang J.-M. Org. Lett. 10 (2008) 4401
-
(2008)
Org. Lett.
, vol.10
, pp. 4401
-
-
Chen, K.-H.1
Yang, J.-S.2
Hwang, C.-Y.3
Fang, J.-M.4
-
50
-
-
0003475878
-
-
For further details and some theoretical bases for the Förster process, see: the relative ratio of the peaks corresponding to the anthracene donor, while normalizing for the peaks corresponding to the perylene acceptor, can be used to estimate the energy transfer efficiency. According to this methodology, the energy transfer efficiencies were estimated to be 0.71, 0.77, and almost quantitative for the reverse micelles at the feed ratios (2/3) of 95/5, 91/9, and the other members of the series (i.e., 2/3=83/17, 75/25, 67/33, 50/50, 33/67, 25/75, 17/83, 9/91, and 5/95), respectively, Wiley-VCH, Weinheim, New York, Chichester, Brisbane, Singapore, Toronto Chapter 9, pp 247-272
-
For further details and some theoretical bases for the Förster process, see: the relative ratio of the peaks corresponding to the anthracene donor, while normalizing for the peaks corresponding to the perylene acceptor, can be used to estimate the energy transfer efficiency. According to this methodology, the energy transfer efficiencies were estimated to be 0.71, 0.77, and almost quantitative for the reverse micelles at the feed ratios (2/3) of 95/5, 91/9, and the other members of the series (i.e., 2/3=83/17, 75/25, 67/33, 50/50, 33/67, 25/75, 17/83, 9/91, and 5/95), respectively. Valeur B. Molecular Fluorescence Principles and Applications (2002), Wiley-VCH, Weinheim, New York, Chichester, Brisbane, Singapore, Toronto Chapter 9, pp 247-272
-
(2002)
Molecular Fluorescence Principles and Applications
-
-
Valeur, B.1
-
51
-
-
60649092346
-
-
note
-
In our previous study employing 1, we reproducibly obtained small-sized spherical objects when the solutions at different concentrations in toluene were cast on the HOPG substrates. Based on those reproducible observations, we concluded that the small-sized peaks could be attributed to the individual reverse micelles and thus the medium-sized peaks should correspond to their assemblies.
-
-
-
-
52
-
-
60649115879
-
-
note
-
For aggregate size determination, dynamic light scattering (DLS) measurements have been performed on the reverse micelles. However, attempts to record particle size distributions failed due to experimental limitations of the setup.
-
-
-
-
53
-
-
60649119609
-
-
At highly dilute concentrations of the surfactants below the cmc, where the surfactants gathering in the reverse micellar forms should become dissociated, the fluorescence spectra of the samples were identical to that of the monomeric perylene emission, whose intensity should increase linearly with the solute concentrations. On the other hand, the formation of the reverse micelles leads to introduction of the radiationless deactivation channels due to the chromophore clustering, resulting in nonlinear dependency of the fluorescence intensities on the solute concentrations. For these reasons, we considered that titration experiments performed by monitoring the intensity of the fluorescence emission from the chromophoric components allowed precise evaluation of the cmc values. As for similar procedures for cmc estimations, see
-
At highly dilute concentrations of the surfactants below the cmc, where the surfactants gathering in the reverse micellar forms should become dissociated, the fluorescence spectra of the samples were identical to that of the monomeric perylene emission, whose intensity should increase linearly with the solute concentrations. On the other hand, the formation of the reverse micelles leads to introduction of the radiationless deactivation channels due to the chromophore clustering, resulting in nonlinear dependency of the fluorescence intensities on the solute concentrations. For these reasons, we considered that titration experiments performed by monitoring the intensity of the fluorescence emission from the chromophoric components allowed precise evaluation of the cmc values. As for similar procedures for cmc estimations, see:
-
-
-
-
54
-
-
22244438828
-
-
Goodwin A.P., Mynar J.L., Ma Y., Fleming G.R., and Fréchet J.M.J. J. Am. Chem. Soc. 127 (2005) 9952
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 9952
-
-
Goodwin, A.P.1
Mynar, J.L.2
Ma, Y.3
Fleming, G.R.4
Fréchet, J.M.J.5
-
55
-
-
33646122698
-
-
Jung C., Müller B.K., Lamb D.C., Nolde F., Müllen K., and Bräuchle C. J. Am. Chem. Soc. 128 (2006) 5283
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 5283
-
-
Jung, C.1
Müller, B.K.2
Lamb, D.C.3
Nolde, F.4
Müllen, K.5
Bräuchle, C.6
-
56
-
-
34250835733
-
-
Kang L., Wang Z., Cao Z., Ma Y., Fu H., and Yao J. J. Am. Chem. Soc. 129 (2007) 7305
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 7305
-
-
Kang, L.1
Wang, Z.2
Cao, Z.3
Ma, Y.4
Fu, H.5
Yao, J.6
-
60
-
-
45249121997
-
-
Wang B.-B., Gao M., Jia X.-R., Li W.-S., Jiang L., and Wei Y. J. Colloid Interface Sci. 324 (2008) 225
-
(2008)
J. Colloid Interface Sci.
, vol.324
, pp. 225
-
-
Wang, B.-B.1
Gao, M.2
Jia, X.-R.3
Li, W.-S.4
Jiang, L.5
Wei, Y.6
-
61
-
-
27144532843
-
-
Beckers E.H.A., Jonkheijm P., Schenning A.P.H.J., Meskers S.C.J., and Janssen R.A.J. ChemPhysChem 6 (2005) 2029
-
(2005)
ChemPhysChem
, vol.6
, pp. 2029
-
-
Beckers, E.H.A.1
Jonkheijm, P.2
Schenning, A.P.H.J.3
Meskers, S.C.J.4
Janssen, R.A.J.5
|