-
1
-
-
0000303285
-
-
Academic Press: Boston, Chapter 43, p
-
(a) Pandey, R. K.; Zheng, G. The Porphyrin Handbook; Academic Press: Boston, 2000; Vol. 6, Chapter 43, p 157.
-
(2000)
The Porphyrin Handbook
, vol.6
, pp. 157
-
-
Pandey, R.K.1
Zheng, G.2
-
2
-
-
0035143694
-
-
(b) Allen, C. M.; Sharman, W. M.; Van Lier, J. E. J. Porphyrin Phthalocyanines 2001, 5, 161.
-
(2001)
J. Porphyrin Phthalocyanines
, vol.5
, pp. 161
-
-
Allen, C.M.1
Sharman, W.M.2
Van Lier, J.E.3
-
3
-
-
19944431237
-
-
(c) Jang, W.-D.; Nishiyama, N.; Zhang, G.-D.; Harada, A.; Jiang, D.-L.; Kawauchi, S.; Morimoto, Y.; Kikuchi, M.; Koyama, H.; Aida, T.; Kataoka, K. Angew. Chem., Int. Ed. 2005, 44, 419.
-
(2005)
Angew. Chem., Int. Ed
, vol.44
, pp. 419
-
-
Jang, W.-D.1
Nishiyama, N.2
Zhang, G.-D.3
Harada, A.4
Jiang, D.-L.5
Kawauchi, S.6
Morimoto, Y.7
Kikuchi, M.8
Koyama, H.9
Aida, T.10
Kataoka, K.11
-
4
-
-
0036496275
-
-
(d) Konan, Y. N.; Gurny, R.; Allemann, E. Photochem. Photobiol., B 2002, 66, 89.
-
(2002)
Photochem. Photobiol., B
, vol.66
, pp. 89
-
-
Konan, Y.N.1
Gurny, R.2
Allemann, E.3
-
5
-
-
33745703563
-
-
(e) Haag, R.; Kratz, F. Angew. Chem., Int. Ed. 2006, 45, 1198.
-
(2006)
Angew. Chem., Int. Ed
, vol.45
, pp. 1198
-
-
Haag, R.1
Kratz, F.2
-
6
-
-
0041696535
-
-
Kruk, M.; Karotki, A.; Drobizher, M.; Kuzmitsky, V.; Gael, V.; Rebang, A. J. Lumin. 2003, 105, 45.
-
(2003)
J. Lumin
, vol.105
, pp. 45
-
-
Kruk, M.1
Karotki, A.2
Drobizher, M.3
Kuzmitsky, V.4
Gael, V.5
Rebang, A.6
-
7
-
-
0036831870
-
-
Cahalan, M. D.; Parker, I.; Wei, S. H.; Miller, M. J. Nat. Rev. Immunol. 2002, 2, 872.
-
(2002)
Nat. Rev. Immunol
, vol.2
, pp. 872
-
-
Cahalan, M.D.1
Parker, I.2
Wei, S.H.3
Miller, M.J.4
-
8
-
-
32344451954
-
-
(a) Ahn, T. K.; Kim, K. S.; Kim, D. Y.; Noh, S. B.; Aratani, N.; Ikeda, C.; Osuka, A.; Kim, D. J. Am. Chem. Soc. 2006, 128, 1700.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 1700
-
-
Ahn, T.K.1
Kim, K.S.2
Kim, D.Y.3
Noh, S.B.4
Aratani, N.5
Ikeda, C.6
Osuka, A.7
Kim, D.8
-
9
-
-
9644281391
-
-
(b) Drobizhev, M.; Stepanenko, Y.; Dzenis, Y.; Karotki, A.; Rebane, A.; Taylor, P. N.; Anderson, H. L. J. Am. Chem. Soc. 2004, 126, 15352.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 15352
-
-
Drobizhev, M.1
Stepanenko, Y.2
Dzenis, Y.3
Karotki, A.4
Rebane, A.5
Taylor, P.N.6
Anderson, H.L.7
-
12
-
-
0346493121
-
-
(c) Choi, M.-S.; Yamazaki, T.; Yamazaki, I.; Aida, T. Angew. Chem., Int. Ed. 2004, 43, 150.
-
(2004)
Angew. Chem., Int. Ed
, vol.43
, pp. 150
-
-
Choi, M.-S.1
Yamazaki, T.2
Yamazaki, I.3
Aida, T.4
-
13
-
-
2342636314
-
-
(a) Dichtel, W. R.; Serin, J. M.; Edder, C.; Fréchet, J. M. J.; Matuszewski, M.; Tan, L.-S.; Ohulchanskyy, T. Y.; Prasad, P. N. J. Am. Chem. Soc. 2004, 126, 5380.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 5380
-
-
Dichtel, W.R.1
Serin, J.M.2
Edder, C.3
Fréchet, J.M.J.4
Matuszewski, M.5
Tan, L.-S.6
Ohulchanskyy, T.Y.7
Prasad, P.N.8
-
14
-
-
18744397861
-
-
(b) Oar, M. A.; Serin, J. A.; Dichtel, W. R.; Fréchet, J. M. J.; Ohulchanskyy, T. Y.; Prasad, P. N. Chem. Mater. 2005, 17, 2267.
-
(2005)
Chem. Mater
, vol.17
, pp. 2267
-
-
Oar, M.A.1
Serin, J.A.2
Dichtel, W.R.3
Fréchet, J.M.J.4
Ohulchanskyy, T.Y.5
Prasad, P.N.6
-
15
-
-
33748258536
-
-
(c) Oar, M. A.; Dichtel, W. R.; Serin, J. M.; Fréchet, J. M. J.; Rogers, J. E.; Slagle, J. E.; Fleitz, P. A.; Tan, L.-S.; Ohulchanskyy, T. Y.; Prasad, P. N. Chem. Mater. 2006, 18, 3682.
-
(2006)
Chem. Mater
, vol.18
, pp. 3682
-
-
Oar, M.A.1
Dichtel, W.R.2
Serin, J.M.3
Fréchet, J.M.J.4
Rogers, J.E.5
Slagle, J.E.6
Fleitz, P.A.7
Tan, L.-S.8
Ohulchanskyy, T.Y.9
Prasad, P.N.10
-
16
-
-
23944432386
-
-
Briñas, R. P.; Troxler, T.; Hochstrasser, R. M.; Vinogradov, S. A. J. Am. Chem. Soc. 2005, 127, 11851.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 11851
-
-
Briñas, R.P.1
Troxler, T.2
Hochstrasser, R.M.3
Vinogradov, S.A.4
-
17
-
-
33847658726
-
-
Kim, S.; Ohulchanskyy, T. Y.; Pudavar, H. E.; Pandey, R. K.; Prasad, P. N. J. Am. Chem. Soc. 2007, 129, 2669.
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 2669
-
-
Kim, S.1
Ohulchanskyy, T.Y.2
Pudavar, H.E.3
Pandey, R.K.4
Prasad, P.N.5
-
18
-
-
34250827720
-
-
Even using this strategy, aggregation of chromophores in water was still observed, resulting in the low quantum yield in micellar water (0.39) as compared with that in THF (0.89).
-
Even using this strategy, aggregation of chromophores in water was still observed, resulting in the low quantum yield in micellar water (0.39) as compared with that in THF (0.89).
-
-
-
-
19
-
-
13944258964
-
-
McIlroy, S. P.; Cló, E.; Nikolajsen, L.; Frederiksen, P. K.; Nielsen, C. B.; Mikkelsen, K. V.; Gothelf, K. V.; Ogilby, P. R. J. Org. Chem. 2005, 70, 1134.
-
(2005)
J. Org. Chem
, vol.70
, pp. 1134
-
-
McIlroy, S.P.1
Cló, E.2
Nikolajsen, L.3
Frederiksen, P.K.4
Nielsen, C.B.5
Mikkelsen, K.V.6
Gothelf, K.V.7
Ogilby, P.R.8
-
20
-
-
34250800777
-
-
The energy transfer efficiency was determined by studying the quenching of the donor fluorescence from 410 to 620 nm in the presence of the acceptor at the same excitation wavelength 380 nm
-
The energy transfer efficiency was determined by studying the quenching of the donor fluorescence from 410 to 620 nm in the presence of the acceptor at the same excitation wavelength (380 nm).
-
-
-
-
21
-
-
34250802528
-
-
It should be noted that the slight quenching effect of 1 to P1 (3, 5, and 10% for 1/P1 with the molar ratios of 0.1/1, 0.6/1, and 1/1, respectively) was observed in their THF mixtures without micellar structures, possibly due to charge or electron transfer. However, these quenching effects were much smaller than those in the micelles. Thus, we believe that the size confinement in micelles may facilitate the requirement of the distance between the donor and acceptor (less than 10 nm) for FRET, though we did not calculate the exact distance between the donor and acceptor in micellar centers
-
It should be noted that the slight quenching effect of 1 to P1 (3, 5, and 10% for 1/P1 with the molar ratios of 0.1/1, 0.6/1, and 1/1, respectively) was observed in their THF mixtures without micellar structures, possibly due to charge or electron transfer. However, these quenching effects were much smaller than those in the micelles. Thus, we believe that the size confinement in micelles may facilitate the requirement of the distance between the donor and acceptor (less than 10 nm) for FRET, though we did not calculate the exact distance between the donor and acceptor in micellar centers.
-
-
-
-
22
-
-
0037273457
-
-
Springer: Berlin
-
(a) Lin, T. C.; Chung, S. J.; Kim, K. S.; Wang, X. P.; He, G. S.; Swiatkiewica, J.; Pudavar, H. E.; Prasad, P. N. Advances in Polymer Science; Springer: Berlin, 2003; Vol. 161, p 157.
-
(2003)
Advances in Polymer Science
, vol.161
, pp. 157
-
-
Lin, T.C.1
Chung, S.J.2
Kim, K.S.3
Wang, X.P.4
He, G.S.5
Swiatkiewica, J.6
Pudavar, H.E.7
Prasad, P.N.8
-
23
-
-
26444554930
-
-
(b) Woo, H. Y.; Korystov, D.; Mikhailovsky, A.; Nguyen, T. Q.; Bazan, G. C. J. Am. Chem. Soc. 2005, 127, 13794.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 13794
-
-
Woo, H.Y.1
Korystov, D.2
Mikhailovsky, A.3
Nguyen, T.Q.4
Bazan, G.C.5
-
24
-
-
0032508693
-
-
(c) Albota, M.; Beljonne, D.; Brédas, J.-L.: Ehrlich, J. E.; Fu, J.-Y.; Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCord-Maughon, D.; Perry, J. W.; Rockel, H.; Rumi, M.; Subramaniam, G.; Webb, W. W.; Wu, X.-L.; Xu, C. Science 1998, 281, 1653.
-
(1998)
Science
, vol.281
, pp. 1653
-
-
Albota, M.1
Beljonne, D.2
Brédas, J.-L.3
Ehrlich, J.E.4
Fu, J.-Y.5
Heikal, A.A.6
Hess, S.E.7
Kogej, T.8
Levin, M.D.9
Marder, S.R.10
McCord-Maughon, D.11
Perry, J.W.12
Rockel, H.13
Rumi, M.14
Subramaniam, G.15
Webb, W.W.16
Wu, X.-L.17
Xu, C.18
-
25
-
-
0001188113
-
-
(d) Ventelon, L.; Charier, S.; Moreaux, L.; Mertz, J.; Blanchard-Desce, M. Angew. Chem., Int. Ed. 2001, 40, 2098.
-
(2001)
Angew. Chem., Int. Ed
, vol.40
, pp. 2098
-
-
Ventelon, L.1
Charier, S.2
Moreaux, L.3
Mertz, J.4
Blanchard-Desce, M.5
-
26
-
-
34250804331
-
-
The amplification of 1/P1 determined by using 1/P2 as counterpart is affected by two factors: energy transfer efficiency and concentration of 1 within the micelles. The large amplification is observed in the molar ratio of 0.6/1 due to the fact that it has similar energy transfer efficiency but less aggregation of 1 within the micelles compared to that of a molecular ratio of 1/1.
-
The amplification of 1/P1 determined by using 1/P2 as counterpart is affected by two factors: energy transfer efficiency and concentration of 1 within the micelles. The large amplification is observed in the molar ratio of 0.6/1 due to the fact that it has similar energy transfer efficiency but less aggregation of 1 within the micelles compared to that of a molecular ratio of 1/1.
-
-
-
-
27
-
-
0001126988
-
-
Lindig, B. A.; Rodger, M. A. J.; Schaap, A. P. J. Am. Chem. Soc. 1980, 102, 5590.
-
(1980)
J. Am. Chem. Soc
, vol.102
, pp. 5590
-
-
Lindig, B.A.1
Rodger, M.A.J.2
Schaap, A.P.3
-
28
-
-
34250805265
-
-
2O. The solution was bubbled with oxygen for 5 min to get an oxygen-saturated aqueous solution.
-
2O. The solution was bubbled with oxygen for 5 min to get an oxygen-saturated aqueous solution.
-
-
-
|