-
1
-
-
0347718066
-
Fast algorithms for projected clustering
-
C.C. Aggarwal, J.L. Wolf, P.S. Yu, C. Procopiuc, and J.S. Park. Fast algorithms for projected clustering. In Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, pages 61-72, 1999. http://www.sigmod.org/sigma.
-
(1999)
Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data
, pp. 61-72
-
-
Aggarwal, C.C.1
Wolf, J.L.2
Yu, P.S.3
Procopiuc, C.4
Park, J.S.5
-
3
-
-
0034296402
-
Generalized discriminant analysis using a kernel approach
-
G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel approach. Neural Computation, 12(10):2385-2404, 2000.
-
(2000)
Neural Computation
, vol.12
, Issue.10
, pp. 2385-2404
-
-
Baudat, G.1
Anouar, F.2
-
5
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
A. Blum and P. Langley. Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1-2):245-271, 1997.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 245-271
-
-
Blum, A.1
Langley, P.2
-
6
-
-
0035478854
-
Random forests
-
L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
7
-
-
27544465829
-
Biclustering of expression data using simulated annealing
-
IEEE Computer Society
-
K. Bryan, P. Cunningham, and N. Bolshakova. Biclustering of expression data using simulated annealing. In CBMS, pages 383-388. IEEE Computer Society, 2005.
-
(2005)
CBMS
, pp. 383-388
-
-
Bryan, K.1
Cunningham, P.2
Bolshakova, N.3
-
8
-
-
84989525001
-
Indexing by latent semantic analysis
-
S.C. Deerwester, S.T. Dumais, T.K. Landauer, G.W. Furnas, and R.A. Harshman. Indexing by latent semantic analysis. Journal of the American Society of Information Science, 41(6):391-407, 1990.
-
(1990)
Journal of the American Society of Information Science
, vol.41
, Issue.6
, pp. 391-407
-
-
Deerwester, S.C.1
Dumais, S.T.2
Landauer, T.K.3
Furnas, G.W.4
Harshman, R.A.5
-
9
-
-
0002390851
-
Efficient feature selection in conceptual clustering
-
D.H. Fisher, editor, Morgan Kaufmann
-
M. Devaney and A. Ram. Efficient feature selection in conceptual clustering. In D.H. Fisher, editor, ICML, pages 92-97. Morgan Kaufmann, 1997.
-
(1997)
ICML
, pp. 92-97
-
-
Devaney, M.1
Ram, A.2
-
10
-
-
84948145012
-
A dynamic approach to reducing dialog in on-line decision guides
-
E. Blanzieri and L. Portinale, editors, EWCBR, of, Springer
-
M. Doyle and P. Cunningham. A dynamic approach to reducing dialog in on-line decision guides. In E. Blanzieri and L. Portinale, editors, EWCBR, volume 1898 of Lecture Notes in Computer Science, pages 49-60. Springer, 2000.
-
(2000)
Lecture Notes in Computer Science
, vol.1898
, pp. 49-60
-
-
Doyle, M.1
Cunningham, P.2
-
11
-
-
0023523514
-
How many clusters are best?-an experiment
-
R.C. Dubes. How many clusters are best?-an experiment. Pattern Recognition, 20(6):645-663, 1987.
-
(1987)
Pattern Recognition
, vol.20
, Issue.6
, pp. 645-663
-
-
Dubes, R.C.1
-
13
-
-
0343442766
-
Knowledge acquisition via incremental conceptual clustering
-
D.H. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2(2): 139-172, 1987.
-
(1987)
Machine Learning
, vol.2
, Issue.2
, pp. 139-172
-
-
Fisher, D.H.1
-
14
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
R.A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179-188, 1936.
-
(1936)
Annals of Eugenics
, vol.7
, pp. 179-188
-
-
Fisher, R.A.1
-
16
-
-
0002410338
-
Information, uncertainty, and the utility of categories
-
Hillsdale, NJ, Lawrence Earlbaum
-
M.A. Gluck and J.E. Corter. Information, uncertainty, and the utility of categories. In Proceedings of the Seventh Annual Conference of the Cognitive Science Society, pages 283-287, Hillsdale, NJ, 1985. Lawrence Earlbaum.
-
(1985)
Proceedings of the Seventh Annual Conference of the Cognitive Science Society
, pp. 283-287
-
-
Gluck, M.A.1
Corter, J.E.2
-
17
-
-
25144456056
-
Computational cluster validation in post-genomic data analysis
-
J. Handl, J. Knowles, and D.B. Kell. Computational cluster validation in post-genomic data analysis. Bioinformatics, 21(15):3201-3212, 2005.
-
(2005)
Bioinformatics
, vol.21
, Issue.15
, pp. 3201-3212
-
-
Handl, J.1
Knowles, J.2
Kell, D.B.3
-
19
-
-
84864039505
-
Laplacian score for feature selection
-
X. He, D. Cai, and P. Niyogi. Laplacian score for feature selection. In NIPS, 2005.
-
(2005)
NIPS
-
-
He, X.1
Cai, D.2
Niyogi, P.3
-
20
-
-
8644228268
-
Locality preserving projections
-
S. Thrun, L.K. Saul, and B. Schölkopf, editors, MIT Press
-
X. He and P. Niyogi. Locality preserving projections. In S. Thrun, L.K. Saul, and B. Schölkopf, editors, NIPS. MIT Press, 2003.
-
(2003)
NIPS
-
-
He, X.1
Niyogi, P.2
-
21
-
-
33845191548
-
Building a latent semantic index of an image database from patterns of relevance feedback
-
D.R. Heisterkamp. Building a latent semantic index of an image database from patterns of relevance feedback. In ICPR (4), pages 134-137, 2002.
-
(2002)
ICPR
, vol.4
, pp. 134-137
-
-
Heisterkamp, D.R.1
-
22
-
-
0001710505
-
Analysis of a complex of statistical variables into principal components
-
H. Hotelling. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24:417-441, 1933.
-
(1933)
Journal of Educational Psychology
, vol.24
, pp. 417-441
-
-
Hotelling, H.1
-
23
-
-
33751565280
-
Solving the small sample size problem of LDA
-
R. Huang, Q. Liu, H. Lu, and S. Ma. Solving the small sample size problem of LDA. In ICPR (3), pages 29-32, 2002.
-
(2002)
ICPR
, vol.3
, pp. 29-32
-
-
Huang, R.1
Liu, Q.2
Lu, H.3
Ma, S.4
-
25
-
-
85099325734
-
Irrelevant features and the subset selection problem
-
New Brunswick, NJ, Morgan Kaufmann
-
G.H. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset selection problem. In Proceedings of the 11th International Conference on Machine Learning, pages 121-129, New Brunswick, NJ, 1994. Morgan Kaufmann.
-
(1994)
Proceedings of the 11th International Conference on Machine Learning
, pp. 121-129
-
-
John, G.H.1
Kohavi, R.2
Pfleger, K.3
-
26
-
-
0031381525
-
Wrappers for feature subset selection
-
R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):273-324, 1997.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
27
-
-
0000494466
-
Optimal brain damage
-
D.S. Touretzky, editor, San Mateo, CA, Morgan Kauffman
-
Y. LeCun, J. Denker, S. Solla, R.E. Howard, and L.D. Jackel. Optimal brain damage. In D.S. Touretzky, editor, Advances in Neural Information Processing Systems II, San Mateo, CA, 1990. Morgan Kauffman.
-
(1990)
Advances in Neural Information Processing Systems II
-
-
LeCun, Y.1
Denker, J.2
Solla, S.3
Howard, R.E.4
Jackel, L.D.5
-
28
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
D.D. Lee and H.S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788-791, 1999.
-
(1999)
Nature
, vol.401
, Issue.6755
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
29
-
-
33750204194
-
Null space approach of fisher discriminant analysis for face recognition
-
D. Maltoni and A.K. Jain, editors, ECCV Workshop BioAW, of, Springer
-
W. Liu, Y. Wang, S.Z. Li, and T. Tan. Null space approach of fisher discriminant analysis for face recognition. In D. Maltoni and A.K. Jain, editors, ECCV Workshop BioAW, volume 3087 of Lecture Notes in Computer Science, pages 32-44. Springer, 2004.
-
(2004)
Lecture Notes in Computer Science
, vol.3087
, pp. 32-44
-
-
Liu, W.1
Wang, Y.2
Li, S.Z.3
Tan, T.4
-
31
-
-
60349097971
-
Using early-stopping to avoid overfitting in wrapper-based feature subset selection employing stochastic search. In M
-
Petridis, editor, CMS Press
-
J. Loughrey and P. Cunningham. Using early-stopping to avoid overfitting in wrapper-based feature subset selection employing stochastic search. In M. Petridis, editor, In 10th UK Workshop on Case-Based Reasoning, pages 3-10. CMS Press, 2005.
-
(2005)
10th UK Workshop on Case-Based Reasoning
, pp. 3-10
-
-
Loughrey, J.1
Cunningham, P.2
-
33
-
-
84898970836
-
Kernel PCA and de-noising in feature spaces
-
M.J. Kearns, S.A. Solla, and D.A. Cohn, editors, The MIT Press
-
S. Mika, B. Schölkopf, A.J. Smola, K.R. Müller, M. Scholz, and G. Rätsch. Kernel PCA and de-noising in feature spaces. In M.J. Kearns, S.A. Solla, and D.A. Cohn, editors, NIPS, pages 536-542. The MIT Press, 1998.
-
(1998)
NIPS
, pp. 536-542
-
-
Mika, S.1
Schölkopf, B.2
Smola, A.J.3
Müller, K.R.4
Scholz, M.5
Rätsch, G.6
-
34
-
-
84957081878
-
Feature subset selection in text-learning
-
C. Nedellec and C. Rouveirol, editors, ECML, of, Springer, Berlin
-
D. Mladenic. Feature subset selection in text-learning. In C. Nedellec and C. Rouveirol, editors, ECML, volume 1398 of Lecture Notes in Computer Science, pages 95-100. Springer, Berlin, 1998.
-
(1998)
Lecture Notes in Computer Science
, vol.1398
, pp. 95-100
-
-
Mladenic, D.1
-
37
-
-
0041875229
-
On spectral clustering: Analysis and an algorithm
-
A.Y. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems, 14(2):849-856, 2001.
-
(2001)
Advances in Neural Information Processing Systems
, vol.14
, Issue.2
, pp. 849-856
-
-
Ng, A.Y.1
Jordan, M.2
Weiss, Y.3
-
38
-
-
60349099464
-
-
S.K. Ng, Z. Zhu, and Y.S. Ong. Whole-genome functional classification of genes by latent semantic analysis on microarray data. In Y.-P. Phoebe Chen, editor, APBC, 29 of CRPLT, pages 123-129. Australian Computer Society, 2004.
-
S.K. Ng, Z. Zhu, and Y.S. Ong. Whole-genome functional classification of genes by latent semantic analysis on microarray data. In Y.-P. Phoebe Chen, editor, APBC, volume 29 of CRPLT, pages 123-129. Australian Computer Society, 2004.
-
-
-
-
39
-
-
35048833795
-
Feature selection using improved mutual information for text classification
-
A.L. N. Fred, T. Caelli, R.P.W. Duin, A.C. Campilho, and D. de Ridder, editors, SSPR/SPR, of, Springer, Berlin
-
J. Novovičová, A. Malík, and P. Pudil. Feature selection using improved mutual information for text classification. In A.L. N. Fred, T. Caelli, R.P.W. Duin, A.C. Campilho, and D. de Ridder, editors, SSPR/SPR, volume 3138 of Lecture Notes in Computer Science, pages 1010-1017. Springer, Berlin, 2004.
-
(2004)
Lecture Notes in Computer Science
, vol.3138
, pp. 1010-1017
-
-
Novovičová, J.1
Malík, A.2
Pudil, P.3
-
41
-
-
84890445089
-
Overfitting making comparisons between variable selection methods
-
J. Reunanen. Overfitting making comparisons between variable selection methods. Journal of Machine Learning Research, 3:1371-1382, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1371-1382
-
-
Reunanen, J.1
-
42
-
-
22944459214
-
The principal components analysis of a graph, and its relationships to spectral clustering
-
Proceedings of the 15th European Conference on Machine Learning ECML 2004
-
M. Saerens, F. Fouss, L. Yen, and P. Dupont. The principal components analysis of a graph, and its relationships to spectral clustering. In Proceedings of the 15th European Conference on Machine Learning (ECML 2004). Lecture Notes in Artificial Intelligence, 3201:371-383, 2004.
-
(2004)
Lecture Notes in Artificial Intelligence
, vol.3201
, pp. 371-383
-
-
Saerens, M.1
Fouss, F.2
Yen, L.3
Dupont, P.4
-
43
-
-
0032308266
-
Content analysis of video using principal componets
-
IEEE Computer Society
-
E. Sahouria and A. Zakhor. Content analysis of video using principal componets. In ICIP (3), pages 541-545, IEEE Computer Society, 1998.
-
(1998)
ICIP (3)
, pp. 541-545
-
-
Sahouria, E.1
Zakhor, A.2
-
45
-
-
33749237332
-
Local Fisher discriminant analysis for supervised dimensionality reduction
-
W.W. Cohen and A. Moore, editors, ACM
-
M. Sugiyama. Local Fisher discriminant analysis for supervised dimensionality reduction. In W.W. Cohen and A. Moore, editors, ICML, pages 905-912. ACM, 2006.
-
(2006)
ICML
, pp. 905-912
-
-
Sugiyama, M.1
-
46
-
-
0242295767
-
Bayesian factor regression models in the "large p, small n" paradigm
-
M. West. Bayesian factor regression models in the "large p, small n" paradigm. Bayesian Statistics, 7:723-732, 2003.
-
(2003)
Bayesian Statistics
, vol.7
, pp. 723-732
-
-
West, M.1
-
47
-
-
27844550205
-
Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach
-
L. Wolf and A. Shashua. Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach. Journal of Machine Learning Research, 6:1855-1887, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1855-1887
-
-
Wolf, L.1
Shashua, A.2
|