메뉴 건너뛰기




Volumn 45, Issue 1, 2009, Pages 77-89

Efficient discovery of risk patterns in medical data

Author keywords

Association rule; Data mining; Decision tree; Epidemiology; Relative risk; Risk pattern

Indexed keywords

ASSOCIATION RULE; DECISION TREE; EPIDEMIOLOGY; RELATIVE RISK; RISK PATTERN;

EID: 60349119970     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artmed.2008.07.008     Document Type: Article
Times cited : (43)

References (27)
  • 2
    • 0034922742 scopus 로고    scopus 로고
    • Machine learning for medical diagnosis: history, state of the art and perspective
    • Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective. Artificial Intelligence in Medicine 1 (2001) 89-109
    • (2001) Artificial Intelligence in Medicine , vol.1 , pp. 89-109
    • Kononenko, I.1
  • 3
    • 35248899494 scopus 로고    scopus 로고
    • Using rules to analyse bio-medical data: a comparison between c4. 5 and PCL
    • Dong G., Tang C., and Wang W. (Eds), Springer, Berlin/Heidelberg
    • Li J., and Wong L. Using rules to analyse bio-medical data: a comparison between c4. 5 and PCL. In: Dong G., Tang C., and Wang W. (Eds). Advances in web-age information management, proceedings of 4th international conference (2003), Springer, Berlin/Heidelberg 254-265
    • (2003) Advances in web-age information management, proceedings of 4th international conference , pp. 254-265
    • Li, J.1    Wong, L.2
  • 7
    • 60349118311 scopus 로고    scopus 로고
    • A rule discovery support system for sequential medical data in the case study of a chronic hepatitis dataset
    • accessed 26.3.08
    • Ohsaki M, Sato Y, Yokoi H, Yamaguchi T. A rule discovery support system for sequential medical data in the case study of a chronic hepatitis dataset. In: Proceedings of the ECML/PKDD-2003 discovery challenge workshop, [ http://www.lisp.vse.cz/challenge/ecmlpkdd2003/, accessed 26.3.08].
    • Proceedings of the ECML/PKDD-2003 discovery challenge workshop
    • Ohsaki, M.1    Sato, Y.2    Yokoi, H.3    Yamaguchi, T.4
  • 8
    • 84937437724 scopus 로고    scopus 로고
    • A frequent patterns tree approach for rule generation with categorical septic shock patient data
    • Crespo J., Maojo V., and Martin F. (Eds), Springer-Verlag, London
    • Paetz J., and Brause R.W. A frequent patterns tree approach for rule generation with categorical septic shock patient data. In: Crespo J., Maojo V., and Martin F. (Eds). Proceedings of the second international symposium on medical data analysis (2001), Springer-Verlag, London 207-212
    • (2001) Proceedings of the second international symposium on medical data analysis , pp. 207-212
    • Paetz, J.1    Brause, R.W.2
  • 10
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J.R. Induction of decision trees. Machine Learning 1 (1986) 81-106
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 12
    • 34250863838 scopus 로고    scopus 로고
    • High-utility pattern mining: a method for discovery of high-utility item sets
    • Hu J., and Mojsilovic A. High-utility pattern mining: a method for discovery of high-utility item sets. Pattern Recognition 11 (2007) 3317-3324
    • (2007) Pattern Recognition , vol.11 , pp. 3317-3324
    • Hu, J.1    Mojsilovic, A.2
  • 13
    • 0001882616 scopus 로고
    • Fast algorithms for mining association rules
    • Bocca J.B., Jarke M., and Zaniolo C. (Eds), Morgan Kaufmann, San Mateo, CA
    • Agrawal R., and Srikant R. Fast algorithms for mining association rules. In: Bocca J.B., Jarke M., and Zaniolo C. (Eds). Proceedings of 20th international conference on very large data bases (1994), Morgan Kaufmann, San Mateo, CA 487-499
    • (1994) Proceedings of 20th international conference on very large data bases , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 14
    • 2442449952 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation: a frequent-pattern tree approach
    • Han J., Pei J., Yin Y., and Mao R. Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Mining and Knowledge Discovery Journal 1 (2004) 53-87
    • (2004) Data Mining and Knowledge Discovery Journal , vol.1 , pp. 53-87
    • Han, J.1    Pei, J.2    Yin, Y.3    Mao, R.4
  • 22
    • 4544293405 scopus 로고    scopus 로고
    • Mining association rules without support threshold: with and without item constraints
    • Cheung Y., and Fu A. Mining association rules without support threshold: with and without item constraints. IEEE Transactions on Knowledge and Data Engineering 9 (2004) 1052-1069
    • (2004) IEEE Transactions on Knowledge and Data Engineering , vol.9 , pp. 1052-1069
    • Cheung, Y.1    Fu, A.2
  • 26
    • 77952363125 scopus 로고    scopus 로고
    • Closet+: searching for the best strategies for mining frequent closed itemsets
    • Getoor L., Senator T.E., Domingos P., and Faloutsos C. (Eds), ACM, New York
    • Wang J., Han J., and Pei J. Closet+: searching for the best strategies for mining frequent closed itemsets. In: Getoor L., Senator T.E., Domingos P., and Faloutsos C. (Eds). Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining (2003), ACM, New York 236-245
    • (2003) Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining , pp. 236-245
    • Wang, J.1    Han, J.2    Pei, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.