-
2
-
-
0034922742
-
Machine learning for medical diagnosis: history, state of the art and perspective
-
Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective. Artificial Intelligence in Medicine 1 (2001) 89-109
-
(2001)
Artificial Intelligence in Medicine
, vol.1
, pp. 89-109
-
-
Kononenko, I.1
-
3
-
-
35248899494
-
Using rules to analyse bio-medical data: a comparison between c4. 5 and PCL
-
Dong G., Tang C., and Wang W. (Eds), Springer, Berlin/Heidelberg
-
Li J., and Wong L. Using rules to analyse bio-medical data: a comparison between c4. 5 and PCL. In: Dong G., Tang C., and Wang W. (Eds). Advances in web-age information management, proceedings of 4th international conference (2003), Springer, Berlin/Heidelberg 254-265
-
(2003)
Advances in web-age information management, proceedings of 4th international conference
, pp. 254-265
-
-
Li, J.1
Wong, L.2
-
5
-
-
0027621699
-
Mining association rules between sets of items in large databases
-
Buneman P., and Jajodia S. (Eds), ACM, New York
-
Agrawal R., Imieliński T., and Swami A. Mining association rules between sets of items in large databases. In: Buneman P., and Jajodia S. (Eds). Proceedings of ACM SIGMOD international conference on management of data (1993), ACM, New York 207-216
-
(1993)
Proceedings of ACM SIGMOD international conference on management of data
, pp. 207-216
-
-
Agrawal, R.1
Imieliński, T.2
Swami, A.3
-
6
-
-
0031819979
-
Association rules and data mining in hospital infection control and public health surveillance
-
Brossette S.E., Sprague A.P., Hardin J.M., Jones K.W.T., and Moser S.A. Association rules and data mining in hospital infection control and public health surveillance. Journal of American Medical Informatics Association 5 (1998) 373-381
-
(1998)
Journal of American Medical Informatics Association
, vol.5
, pp. 373-381
-
-
Brossette, S.E.1
Sprague, A.P.2
Hardin, J.M.3
Jones, K.W.T.4
Moser, S.A.5
-
7
-
-
60349118311
-
A rule discovery support system for sequential medical data in the case study of a chronic hepatitis dataset
-
accessed 26.3.08
-
Ohsaki M, Sato Y, Yokoi H, Yamaguchi T. A rule discovery support system for sequential medical data in the case study of a chronic hepatitis dataset. In: Proceedings of the ECML/PKDD-2003 discovery challenge workshop, [ http://www.lisp.vse.cz/challenge/ecmlpkdd2003/, accessed 26.3.08].
-
Proceedings of the ECML/PKDD-2003 discovery challenge workshop
-
-
Ohsaki, M.1
Sato, Y.2
Yokoi, H.3
Yamaguchi, T.4
-
8
-
-
84937437724
-
A frequent patterns tree approach for rule generation with categorical septic shock patient data
-
Crespo J., Maojo V., and Martin F. (Eds), Springer-Verlag, London
-
Paetz J., and Brause R.W. A frequent patterns tree approach for rule generation with categorical septic shock patient data. In: Crespo J., Maojo V., and Martin F. (Eds). Proceedings of the second international symposium on medical data analysis (2001), Springer-Verlag, London 207-212
-
(2001)
Proceedings of the second international symposium on medical data analysis
, pp. 207-212
-
-
Paetz, J.1
Brause, R.W.2
-
9
-
-
32344438056
-
Mining risk patterns in medical data
-
Grossman R., Bayardo R.J., and Bennett K.P. (Eds), ACM, New York
-
Li J., chee Fu A.W., He H., Chen J., Jin H., McAullay D., et al. Mining risk patterns in medical data. In: Grossman R., Bayardo R.J., and Bennett K.P. (Eds). Proceedings of the 11th ACM SIGKDD international conference on knowledge discovery and data mining (2005), ACM, New York 770-775
-
(2005)
Proceedings of the 11th ACM SIGKDD international conference on knowledge discovery and data mining
, pp. 770-775
-
-
Li, J.1
chee Fu, A.W.2
He, H.3
Chen, J.4
Jin, H.5
McAullay, D.6
-
10
-
-
33744584654
-
Induction of decision trees
-
Quinlan J.R. Induction of decision trees. Machine Learning 1 (1986) 81-106
-
(1986)
Machine Learning
, vol.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
12
-
-
34250863838
-
High-utility pattern mining: a method for discovery of high-utility item sets
-
Hu J., and Mojsilovic A. High-utility pattern mining: a method for discovery of high-utility item sets. Pattern Recognition 11 (2007) 3317-3324
-
(2007)
Pattern Recognition
, vol.11
, pp. 3317-3324
-
-
Hu, J.1
Mojsilovic, A.2
-
13
-
-
0001882616
-
Fast algorithms for mining association rules
-
Bocca J.B., Jarke M., and Zaniolo C. (Eds), Morgan Kaufmann, San Mateo, CA
-
Agrawal R., and Srikant R. Fast algorithms for mining association rules. In: Bocca J.B., Jarke M., and Zaniolo C. (Eds). Proceedings of 20th international conference on very large data bases (1994), Morgan Kaufmann, San Mateo, CA 487-499
-
(1994)
Proceedings of 20th international conference on very large data bases
, pp. 487-499
-
-
Agrawal, R.1
Srikant, R.2
-
14
-
-
2442449952
-
Mining frequent patterns without candidate generation: a frequent-pattern tree approach
-
Han J., Pei J., Yin Y., and Mao R. Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Mining and Knowledge Discovery Journal 1 (2004) 53-87
-
(2004)
Data Mining and Knowledge Discovery Journal
, vol.1
, pp. 53-87
-
-
Han, J.1
Pei, J.2
Yin, Y.3
Mao, R.4
-
15
-
-
7444238334
-
Temporal sequence associations for rare events
-
Dai H., Srikant R., and Zhang C. (Eds), Springer, Berlin/Heidelberg
-
Chen J., He H., Williams G.J., and Jin H. Temporal sequence associations for rare events. In: Dai H., Srikant R., and Zhang C. (Eds). Advances in knowledge discovery and data mining, eighth Pacific-Asia conference (2004), Springer, Berlin/Heidelberg 235-239
-
(2004)
Advances in knowledge discovery and data mining, eighth Pacific-Asia conference
, pp. 235-239
-
-
Chen, J.1
He, H.2
Williams, G.J.3
Jin, H.4
-
19
-
-
0002794538
-
Mining the most interesting rules
-
Fayyad U., Chaudhuri S., and Madigan D. (Eds), ACM, New York
-
Roberto J., Bayardo J., and Agrawal R. Mining the most interesting rules. In: Fayyad U., Chaudhuri S., and Madigan D. (Eds). Proceedings of the fifth ACM SIGKDD international conference on knowledge discovery and data mining (1999), ACM, New York 145-154
-
(1999)
Proceedings of the fifth ACM SIGKDD international conference on knowledge discovery and data mining
, pp. 145-154
-
-
Roberto, J.1
Bayardo, J.2
Agrawal, R.3
-
20
-
-
0034592782
-
Efficient search for association rules
-
Ramakrishnan R., Stolfo S., Bayardo R., and Parsa I. (Eds), ACM, New York
-
Webb G.I. Efficient search for association rules. In: Ramakrishnan R., Stolfo S., Bayardo R., and Parsa I. (Eds). Proceedings of the sixth ACM SIGKDD international conference on knowledge discovery and data mining (2000), ACM, New York 99-107
-
(2000)
Proceedings of the sixth ACM SIGKDD international conference on knowledge discovery and data mining
, pp. 99-107
-
-
Webb, G.I.1
-
22
-
-
4544293405
-
Mining association rules without support threshold: with and without item constraints
-
Cheung Y., and Fu A. Mining association rules without support threshold: with and without item constraints. IEEE Transactions on Knowledge and Data Engineering 9 (2004) 1052-1069
-
(2004)
IEEE Transactions on Knowledge and Data Engineering
, vol.9
, pp. 1052-1069
-
-
Cheung, Y.1
Fu, A.2
-
23
-
-
33244461081
-
Relative risk and odds ratio: a data mining perspective
-
Li C. (Ed), ACM, New York
-
Li H., Li J., Wong L., Feng M., and Tan Y.-P. Relative risk and odds ratio: a data mining perspective. In: Li C. (Ed). Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems (2005), ACM, New York 368-377
-
(2005)
Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems
, pp. 368-377
-
-
Li, H.1
Li, J.2
Wong, L.3
Feng, M.4
Tan, Y.-P.5
-
24
-
-
35048892175
-
Evaluation of rule interestingness measures with a clinical dataset on hepatitis
-
Boulicaut J.-F., Esposito F., Giannotti F., and Pedreschi D. (Eds), Springer-Verlag, New York
-
Ohsaki M., Kitaguchi S., Okamoto K., Yokoi H., and Yamaguchi T. Evaluation of rule interestingness measures with a clinical dataset on hepatitis. In: Boulicaut J.-F., Esposito F., Giannotti F., and Pedreschi D. (Eds). Proceedings of the eighth European conference on principles and practice of knowledge discovery in databases (2004), Springer-Verlag, New York 362-373
-
(2004)
Proceedings of the eighth European conference on principles and practice of knowledge discovery in databases
, pp. 362-373
-
-
Ohsaki, M.1
Kitaguchi, S.2
Okamoto, K.3
Yokoi, H.4
Yamaguchi, T.5
-
26
-
-
77952363125
-
Closet+: searching for the best strategies for mining frequent closed itemsets
-
Getoor L., Senator T.E., Domingos P., and Faloutsos C. (Eds), ACM, New York
-
Wang J., Han J., and Pei J. Closet+: searching for the best strategies for mining frequent closed itemsets. In: Getoor L., Senator T.E., Domingos P., and Faloutsos C. (Eds). Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining (2003), ACM, New York 236-245
-
(2003)
Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining
, pp. 236-245
-
-
Wang, J.1
Han, J.2
Pei, J.3
|