-
1
-
-
0034592748
-
Depth first generation of long patterns
-
ACM, Boston, MA
-
Agarwal, R.C., Aggarwal, C.C., and Prasad, V.V.V. 2000. Depth first generation of long patterns. In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD2000). ACM, Boston, MA, pp. 108-118.
-
(2000)
Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD2000)
, pp. 108-118
-
-
Agarwal, R.C.1
Aggarwal, C.C.2
Prasad, V.V.V.3
-
2
-
-
0027621699
-
Mining associations between sets of items in massive databases
-
Washington, DC
-
Agrawal, R., Imielinski, T., and Swami, A. 1993. Mining associations between sets of items in massive databases. In Proceedings of the 1993 ACM-SIGMOD International Conference on Management of Data. Washington, DC, pp. 207-216.
-
(1993)
Proceedings of the 1993 ACM-SIGMOD International Conference on Management of Data
, pp. 207-216
-
-
Agrawal, R.1
Imielinski, T.2
Swami, A.3
-
3
-
-
0001371923
-
Fast discovery of association rules
-
U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (Eds.) CA.: AAAI Press
-
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and Verkamo, A.I. 1996. Fast discovery of association rules. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (Eds.). Advances in Knowledge Discovery and Data Mining. Menlo Park, CA.: AAAI Press, pp. 307-328.
-
(1996)
Advances in Knowledge Discovery and Data Mining. Menlo Park
, pp. 307-328
-
-
Agrawal, R.1
Mannila, H.2
Srikant, R.3
Toivonen, H.4
Verkamo, A.I.5
-
5
-
-
4644256188
-
-
Irvine, CA: University of California, Department of Information and Computer Science
-
Bay, S.D. 2001. The UCIKDD archive, [http://kdd.ics.uci.edu] Irvine, CA: University of California, Department of Information and Computer Science.
-
(2001)
The UCIKDD Archive
-
-
Bay, S.D.1
-
8
-
-
23044517681
-
Constraint-based rule mining in large, dense databases
-
Bayardo, R.J., Agrawal, R., and Gunopulos, D. 2000. Constraint-based rule mining in large, dense databases. Data Mining and Knowledge Discovery, 4(2/3):217-240.
-
(2000)
Data Mining and Knowledge Discovery
, vol.4
, Issue.2-3
, pp. 217-240
-
-
Bayardo, R.J.1
Agrawal, R.2
Gunopulos, D.3
-
9
-
-
0003408496
-
-
[Machine-readable data repository]. University of California, Department of Information and Computer Science, Irvine, CA
-
Blake, C. and Merz, C.J. 2001. UCI repository of machine learning databases. [Machine-readable data repository]. University of California, Department of Information and Computer Science, Irvine, CA.
-
(2001)
UCI Repository of Machine Learning Databases
-
-
Blake, C.1
Merz, C.J.2
-
10
-
-
14844365581
-
-
Apriori. (Computer Software)
-
Borgelt, C. 2000. Apriori. (Computer Software) http://fuzzy.cs.Uni- Magdeburg.de/~borgelt/.
-
(2000)
-
-
Borgelt, C.1
-
11
-
-
0003026085
-
DENDRAL and meta-DENDRAL: Their applications dimension
-
Buchanan, B.G. and Feigenbaum, E.A. 1978. DENDRAL and meta-DENDRAL: Their applications dimension. Artificial Intelligence, 11:5-24.
-
(1978)
Artificial Intelligence
, vol.11
, pp. 5-24
-
-
Buchanan, B.G.1
Feigenbaum, E.A.2
-
12
-
-
34249966007
-
The CN2 induction algorithm
-
Clark, P. and Niblett, T. 1989. The CN2 induction algorithm. Machine Learning, 3:261-284.
-
(1989)
Machine Learning
, vol.3
, pp. 261-284
-
-
Clark, P.1
Niblett, T.2
-
13
-
-
0025562895
-
RL4: A tool for knowledge-based induction
-
Los Alamitos, CA, IEEE Computer Society Press
-
Clearwater, S.H. and Provost, F.J. 1990. RL4: A tool for knowledge-based induction. In Proceedings of Second Intl. IEEE Conf. on Tools for AI. Los Alamitos, CA, IEEE Computer Society Press, pp. 24-30.
-
(1990)
Proceedings of Second Intl. IEEE Conf. on Tools for AI
, pp. 24-30
-
-
Clearwater, S.H.1
Provost, F.J.2
-
14
-
-
0033877655
-
Finding interesting associations without support pruning
-
Cohen, E., Datar, M., Fujiwara, S., Gionis, A., Indyk, R., Motwani, P., Ullman, J., and Yang, C. 2000. Finding interesting associations without support pruning. In Proceedings International Conference on Data Engineering, pp. 489-499.
-
(2000)
Proceedings International Conference on Data Engineering
, pp. 489-499
-
-
Cohen, E.1
Datar, M.2
Fujiwara, S.3
Gionis, A.4
Indyk, R.5
Motwani, P.6
Ullman, J.7
Yang, C.8
-
16
-
-
0039253846
-
Mining frequent patterns without candidate generation
-
Dallas, TX
-
Han, J., Pei, J., and Yin, Y. 2000. Mining frequent patterns without candidate generation. In Proceedings 2000 ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'00). Dallas, TX, pp. 1-12.
-
(2000)
Proceedings 2000 ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'00)
, pp. 1-12
-
-
Han, J.1
Pei, J.2
Yin, Y.3
-
17
-
-
0001880210
-
KDD-cup 2000 organizers report: Peeling the onion
-
Kohavi, R., Brodley, C., Frasca, B., Mason, L., and Zheng, Z. 2000. KDD-cup 2000 organizers report: Peeling the onion. SIGKDD Explorations, 2(2):86-98.
-
(2000)
SIGKDD Explorations
, vol.2
, Issue.2
, pp. 86-98
-
-
Kohavi, R.1
Brodley, C.2
Frasca, B.3
Mason, L.4
Zheng, Z.5
-
18
-
-
84948104699
-
Integrating classification and association rule mining
-
Liu, B., Hsu, W., and Ma, Y. 1998. Integrating classification and association rule mining. In Proceedings Knowledge Discovery and Data Mining (KDD-98), pp. 80-86.
-
(1998)
Proceedings Knowledge Discovery and Data Mining (KDD-98)
, pp. 80-86
-
-
Liu, B.1
Hsu, W.2
Ma, Y.3
-
19
-
-
0001267179
-
Mining association rules with multiple minimum supports
-
San Diego, CA
-
Liu, B., Hsu, W., and Ma, Y. 1999. Mining association rules with multiple minimum supports. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-99). San Diego, CA, pp. 337-341.
-
(1999)
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-99)
, pp. 337-341
-
-
Liu, B.1
Hsu, W.2
Ma, Y.3
-
21
-
-
0001544542
-
Parallel branch-and-bound graph search for correlated association ruless
-
Berlin, Springer
-
Morishita, S. and Nakaya, A. 2000. Parallel branch-and-bound graph search for correlated association ruless. In Proceedings of the ACM SIGKDD Workshop on Large-Scale Parallel KDD Systems, Vol. LNAI 1759. Berlin, Springer, pp. 127-144.
-
(2000)
Proceedings of the ACM SIGKDD Workshop on Large-scale Parallel KDD Systems
, vol.LNAI 1759
, pp. 127-144
-
-
Morishita, S.1
Nakaya, A.2
-
22
-
-
84911977993
-
Discovering frequent closed itemsets for association rules
-
Jerusalem, Israel
-
Pasquier, N., Bastide,Y., Taouil, R., and Lakhal, L. 1999. Discovering frequent closed itemsets for association rules. In Proceedings of the Seventh International Conference on Database Theory (ICDT'99). Jerusalem, Israel, pp. 398-416.
-
(1999)
Proceedings of the Seventh International Conference on Database Theory (ICDT'99)
, pp. 398-416
-
-
Pasquier, N.1
Bastide, Y.2
Taouil, R.3
Lakhal, L.4
-
23
-
-
0002625450
-
CLOSET: An efficient algorithm for mining frequent closed itemsets
-
Dallas, TX
-
Pei, J., Han, J., and Mao, R. 2000. CLOSET: An efficient algorithm for mining frequent closed itemsets. In Proceedings 2000 ACM-SIGMOD Int. Workshop on Data Mining and Knowledge Discovery (DMKD'00). Dallas, TX, pp. 21-30.
-
(2000)
Proceedings 2000 ACM-SIGMOD Int. Workshop on Data Mining and Knowledge Discovery (DMKD'00)
, pp. 21-30
-
-
Pei, J.1
Han, J.2
Mao, R.3
-
24
-
-
0002877253
-
Discovery, analysis, and presentation of strong rules
-
G. Piatetsky-Shapiro and J. Frawley (Eds.). AAAI/MIT Press
-
Piatetsky-Shapiro, G. 1991. Discovery, analysis, and presentation of strong rules. In Knowledge Discovery in Databases. G. Piatetsky-Shapiro and J. Frawley (Eds.). AAAI/MIT Press, pp. 229-248.
-
(1991)
Knowledge Discovery in Databases
, pp. 229-248
-
-
Piatetsky-Shapiro, G.1
-
25
-
-
14844361936
-
Rule-space search for knowledge-based discovery
-
Stern School of Business, New York University, NY, NY 10012
-
Provost, F., Aronis, J., and Buchanan, B. 1999. Rule-space search for knowledge-based discovery. CIIO Working Paper IS 99-012, Stern School of Business, New York University, NY, NY 10012.
-
(1999)
CIIO Working Paper IS 99-012
-
-
Provost, F.1
Aronis, J.2
Buchanan, B.3
-
26
-
-
0039074502
-
Search through systematic set enumeration
-
Cambridge, MA
-
Rymon, R. 1992. Search through systematic set enumeration. In Proceedings KR-92. Cambridge, MA, pp. 268-275.
-
(1992)
Proceedings KR-92
, pp. 268-275
-
-
Rymon, R.1
-
27
-
-
0002082857
-
An efficient algorithm for mining association rules in large databases
-
Morgan Kaufmann
-
Savasere, A., Omiecinski, E., and Navathe, S. 1995. An efficient algorithm for mining association rules in large databases. In Proceedings of the 21st International Conference on Very Large Data Bases. Morgan Kaufmann, pp. 432-444.
-
(1995)
Proceedings of the 21st International Conference on Very Large Data Bases
, pp. 432-444
-
-
Savasere, A.1
Omiecinski, E.2
Navathe, S.3
-
28
-
-
0003339376
-
Learning decision lists using homogeneous rules
-
WA, AAAI Press
-
Segal, R. and Etzioni, O. 1994. Learning decision lists using homogeneous rules. In AAAI-94. Seattle, WA, AAAI Press.
-
(1994)
AAAI-94. Seattle
-
-
Segal, R.1
Etzioni, O.2
-
29
-
-
84908362061
-
Predictive performance of weighted relative accuracy
-
D.A. Zighed, J. Komorowski, and J. Zytkow (Eds.). Springer-Verlag
-
Todorovski, L., Flach, P., and Lavrac, N. 2000. Predictive performance of weighted relative accuracy. In Proceedings of the Fourth European Conference on Principles of Data Mining and Knowledge Discovery (PKDD2000). D.A. Zighed, J. Komorowski, and J. Zytkow (Eds.). Springer-Verlag, pp. 255-264.
-
(2000)
Proceedings of the Fourth European Conference on Principles of Data Mining and Knowledge Discovery (PKDD2000)
, pp. 255-264
-
-
Todorovski, L.1
Flach, P.2
Lavrac, N.3
-
31
-
-
0000835392
-
OPUS: An efficient admissible algorithm for unordered search
-
Webb, G.I. 1995. OPUS: An efficient admissible algorithm for unordered search. Journal of Artificial Intelligence Research, 3:431-465.
-
(1995)
Journal of Artificial Intelligence Research
, vol.3
, pp. 431-465
-
-
Webb, G.I.1
-
34
-
-
0035788918
-
Real world performance of association rule algorithms
-
San Francisco, ACM
-
Zheng, Z., Kohavi, R., and Mason, L. 2001. Real world performance of association rule algorithms. In KDD-2001: Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining. San Francisco, ACM, pp. 401-406.
-
(2001)
KDD-2001: Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining
, pp. 401-406
-
-
Zheng, Z.1
Kohavi, R.2
Mason, L.3
|