메뉴 건너뛰기




Volumn , Issue , 2006, Pages 17-24

Comparing association rules and decision trees for disease prediction

Author keywords

Association rule; Decision tree; Medical data

Indexed keywords

ASSOCIATION RULES; DATA MINING; DECISION TREES; LEARNING SYSTEMS; RELIABILITY THEORY; RISK ANALYSIS;

EID: 34547661876     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1183568.1183573     Document Type: Conference Paper
Times cited : (65)

References (34)
  • 1
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In ACM SIGMOD Conference, pages 207-216, 1993.
    • (1993) ACM SIGMOD Conference , pp. 207-216
    • Agrawal, R.1    Imielinski, T.2    Swami, A.3
  • 2
    • 0001882616 scopus 로고
    • Fast algorithms for mining association rules in large databases
    • R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In VLDB Conference, pages 487-499, 1994.
    • (1994) VLDB Conference , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 3
    • 84867817851 scopus 로고    scopus 로고
    • Mining minimal non-redundant association rules using frequent closed itemsets
    • Y. Bastide, N. Pasquier, R. Taouil, and G. L. Lakhal. Mining minimal non-redundant association rules using frequent closed itemsets. In Computational Logic, pages 972-986, 2000.
    • (2000) Computational Logic , pp. 972-986
    • Bastide, Y.1    Pasquier, N.2    Taouil, R.3    Lakhal, G.L.4
  • 5
    • 0038313118 scopus 로고    scopus 로고
    • Strong association-rule mining for large-scale gene-expression data analysis: A case study on human SAGE data
    • C. Becquet, S. Blachon, B. Jeudy, J.F. Boulicaut, and O. Gandrillon. Strong association-rule mining for large-scale gene-expression data analysis: a case study on human SAGE data. Genom Biol., 3(12), 2002.
    • (2002) Genom Biol , vol.3 , Issue.12
    • Becquet, C.1    Blachon, S.2    Jeudy, B.3    Boulicaut, J.F.4    Gandrillon, O.5
  • 6
    • 0031162961 scopus 로고    scopus 로고
    • Dynamic itemset counting and implication rules for market basket data
    • S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket data. In ACM SIGMOD Conference, pages 255-264, 1997.
    • (1997) ACM SIGMOD Conference , pp. 255-264
    • Brin, S.1    Motwani, R.2    Ullman, J.D.3    Tsur, S.4
  • 8
    • 0034518796 scopus 로고    scopus 로고
    • A data mining system for infection control surveillance
    • S.E. Brossette, A.P. Sprague, W.T. Jones, and S.A. Moser. A data mining system for infection control surveillance. Methods Inf Med., 39(4):303-310, 2000.
    • (2000) Methods Inf Med , vol.39 , Issue.4 , pp. 303-310
    • Brossette, S.E.1    Sprague, A.P.2    Jones, W.T.3    Moser, S.A.4
  • 9
    • 0142008547 scopus 로고    scopus 로고
    • Dbc: A condensed representation of frequent patterns for efficient mining
    • A. Bykowski and C. Rigotti. Dbc: a condensed representation of frequent patterns for efficient mining. Information Systems, 28(8):949-977, 2003.
    • (2003) Information Systems , vol.28 , Issue.8 , pp. 949-977
    • Bykowski, A.1    Rigotti, C.2
  • 10
    • 0142012105 scopus 로고    scopus 로고
    • Application of a data mining technique to analyze coprescription patterns for antacids in Taiwan
    • T.J. Chen, L.F. Chou, and S.J. Hwang. Application of a data mining technique to analyze coprescription patterns for antacids in Taiwan. Clin Ther, 25(9):2453-2463, 2003.
    • (2003) Clin Ther , vol.25 , Issue.9 , pp. 2453-2463
    • Chen, T.J.1    Chou, L.F.2    Hwang, S.J.3
  • 11
    • 0037245822 scopus 로고    scopus 로고
    • Mining gene expression databases for association rules
    • C. Creighton and S. Hanash. Mining gene expression databases for association rules. Bioinformatics, 19(1):79-86, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.1 , pp. 79-86
    • Creighton, C.1    Hanash, S.2
  • 13
    • 0034571583 scopus 로고    scopus 로고
    • Mining association rules from a pediatric primary care decision support system
    • S.M. Down and M.Y. Wallace. Mining association rules from a pediatric primary care decision support system. In Proc of AMIA Symp., pages 200-204, 2000.
    • (2000) Proc of AMIA Symp , pp. 200-204
    • Down, S.M.1    Wallace, M.Y.2
  • 15
    • 0038309917 scopus 로고    scopus 로고
    • Evaluation of a cardiac diagnostic program in a typical clinical setting
    • H.S. Fraser, W.J. Long, and S. Naimi. Evaluation of a cardiac diagnostic program in a typical clinical setting. J Am Med Inform Assoc. (JAMIA), 10(4):373-381, 2003.
    • (2003) J Am Med Inform Assoc. (JAMIA) , vol.10 , Issue.4 , pp. 373-381
    • Fraser, H.S.1    Long, W.J.2    Naimi, S.3
  • 16
    • 0242647897 scopus 로고    scopus 로고
    • Understanding the crucial differences between classification and association rules - a position paper
    • A. Freitas. Understanding the crucial differences between classification and association rules - a position paper. SIGKDD Explorations, 2(1):65-69, 2000.
    • (2000) SIGKDD Explorations , vol.2 , Issue.1 , pp. 65-69
    • Freitas, A.1
  • 19
    • 0038122164 scopus 로고    scopus 로고
    • Concise representation of frequent patterns based on disjunction-free generators
    • M. Kryszkiewicz. Concise representation of frequent patterns based on disjunction-free generators. In IEEE ICDM Conference, pages 305-312, 2001.
    • (2001) IEEE ICDM Conference , pp. 305-312
    • Kryszkiewicz, M.1
  • 20
    • 2442604532 scopus 로고    scopus 로고
    • Reducing borders of k-disjunction free representations of frequent patterns
    • M. Kryszkiewicz. Reducing borders of k-disjunction free representations of frequent patterns. In ACM SAC Conference, pages 559-563, 2004.
    • (2004) ACM SAC Conference , pp. 559-563
    • Kryszkiewicz, M.1
  • 22
    • 0024880812 scopus 로고
    • Medical reasoning using a probabilistic network
    • W.J. Long. Medical reasoning using a probabilistic network. Applied Artifical Intelligence, 3:367-383, 1989.
    • (1989) Applied Artifical Intelligence , vol.3 , pp. 367-383
    • Long, W.J.1
  • 24
    • 0032092760 scopus 로고    scopus 로고
    • Exploratory mining and pruning optimizations of constrained association rules
    • R. Ng, Laks Lakshmanan, and J. Han. Exploratory mining and pruning optimizations of constrained association rules. In A CM SIGMOD Conference, pages 13-24, 1998.
    • (1998) A CM SIGMOD Conference , pp. 13-24
    • Ng, R.1    Lakshmanan, L.2    Han, J.3
  • 25
    • 33645538917 scopus 로고    scopus 로고
    • Constraining and summarizing association rules in medical data
    • C. Ordonez, N. Ezquerra, and C.A. Santana. Constraining and summarizing association rules in medical data. Knowl and Inf Syst (KAIS), 9(3):259-283, 2006.
    • (2006) Knowl and Inf Syst (KAIS) , vol.9 , Issue.3 , pp. 259-283
    • Ordonez, C.1    Ezquerra, N.2    Santana, C.A.3
  • 27
    • 0036083294 scopus 로고    scopus 로고
    • Extraction of knowledge on protein-protein interaction by association rule discovery
    • T. Oyama, K. Kitano, T. Satou, and T. Ito. Extraction of knowledge on protein-protein interaction by association rule discovery. Bioinformatics, 18(5):705-714, 2002.
    • (2002) Bioinformatics , vol.18 , Issue.5 , pp. 705-714
    • Oyama, T.1    Kitano, K.2    Satou, T.3    Ito, T.4
  • 28
    • 11944266142 scopus 로고    scopus 로고
    • The representative basis for association rules
    • V. Phan-Luong. The representative basis for association rules. In IEEE ICDM Conference, pages 639-640, 2001.
    • (2001) IEEE ICDM Conference , pp. 639-640
    • Phan-Luong, V.1
  • 29
    • 33645548158 scopus 로고    scopus 로고
    • Exploratory medical knowledge discovery: Experiences and issues
    • J.F. Roddick, P. Fule, and W.J. Graco. Exploratory medical knowledge discovery: Experiences and issues. SIGKDD Explorations, 5(1):94-99, 2003.
    • (2003) SIGKDD Explorations , vol.5 , Issue.1 , pp. 94-99
    • Roddick, J.F.1    Fule, P.2    Graco, W.J.3
  • 30
    • 0002880407 scopus 로고
    • Mining generalized association rules
    • R. Srikant and R. Agrawal. Mining generalized association rules. In VLDB Conference, pages 407-419, 1995.
    • (1995) VLDB Conference , pp. 407-419
    • Srikant, R.1    Agrawal, R.2
  • 31
    • 0030157416 scopus 로고    scopus 로고
    • Mining quantitative association rules in large relational tables
    • R. Srikant and R. Agrawal. Mining quantitative association rules in large relational tables. In ACM SIGMOD Conference, pages 1-12, 1996.
    • (1996) ACM SIGMOD Conference , pp. 1-12
    • Srikant, R.1    Agrawal, R.2
  • 32
    • 85162588849 scopus 로고    scopus 로고
    • Mining association rules with item constraints
    • R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints. In ACM KDD Conference, pages 67-73, 1997.
    • (1997) ACM KDD Conference , pp. 67-73
    • Srikant, R.1    Vu, Q.2    Agrawal, R.3
  • 34
    • 0037619022 scopus 로고    scopus 로고
    • Pushing support constraints into association rules mining
    • K. Wang, Y. He, and J. Han. Pushing support constraints into association rules mining. IEEE TKDE, 15(3):642-658, 2003.
    • (2003) IEEE TKDE , vol.15 , Issue.3 , pp. 642-658
    • Wang, K.1    He, Y.2    Han, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.