메뉴 건너뛰기




Volumn 9, Issue 3, 2006, Pages 259-283

Constraining and summarizing association rules in medical data

Author keywords

Association rules; Cover; Lift; Search constraint

Indexed keywords

ASSOCIATION RULES; CLUSTERING ALGORITHMS; LIFT;

EID: 33645538917     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-005-0226-5     Document Type: Article
Times cited : (126)

References (52)
  • 1
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • ACM SIGMOD Conference
    • Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large databases. ACM SIGMOD conference, pp 207-216
    • (1993) , pp. 207-216
    • Agrawal, R.1    Imielinski, T.2    Swami, A.3
  • 2
    • 0001882616 scopus 로고
    • Fast algorithms for mining association rules in large databases
    • VLDB Conference
    • Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. VLDB conference, pp 487-499
    • (1994) , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 3
    • 84867817851 scopus 로고    scopus 로고
    • Mining minimal non-redundant association rules using frequent closed itemsets
    • Bastide Y, Pasquier N, Taouil R, Lakhal GL (2000) Mining minimal non-redundant association rules using frequent closed itemsets. Computational logic, pp 972-986
    • (2000) Computational Logic , pp. 972-986
    • Bastide, Y.1    Pasquier, N.2    Taouil, R.3    Lakhal, G.L.4
  • 4
    • 0002794538 scopus 로고    scopus 로고
    • Mining the most interesting rules
    • ACM KDD Conference
    • Bayardo R, Agrawal R (1999) Mining the most interesting rules. ACM KDD conference, pp 145-154
    • (1999) , pp. 145-154
    • Bayardo, R.1    Agrawal, R.2
  • 5
    • 0038313118 scopus 로고    scopus 로고
    • Strong association-rule mining for large-scale gene-expression data analysis: A case study on human SAGE data
    • Becquet C, Blachon S, Jeudy B, Boulicaut J, Gandrillon O (2002) Strong association-rule mining for large-scale gene-expression data analysis: A case study on human SAGE data. Genom Biol 3 (12)
    • (2002) Genom Biol , vol.3 , Issue.12
    • Becquet, C.1    Blachon, S.2    Jeudy, B.3    Boulicaut, J.4    Gandrillon, O.5
  • 7
    • 0031162961 scopus 로고    scopus 로고
    • Dynamic itemset counting and implication rules for market basket data
    • ACM SIGMOD Conference
    • Brin S, Motwani R, Ullman J, Tsur S (1997) Dynamic itemset counting and implication rules for market basket data. ACM SIGMOD conference, pp 255-264
    • (1997) , pp. 255-264
    • Brin, S.1    Motwani, R.2    Ullman, J.3    Tsur, S.4
  • 9
    • 0034518796 scopus 로고    scopus 로고
    • A data mining system for infection control surveillance
    • Brossette S, Sprague A, Jones W, Moser S (2000) A data mining system for infection control surveillance. Methods Inf Med 39 (4):303-310
    • (2000) Methods Inf Med , vol.39 , Issue.4 , pp. 303-310
    • Brossette, S.1    Sprague, A.2    Jones, W.3    Moser, S.4
  • 10
    • 0142008547 scopus 로고    scopus 로고
    • Dbc: A condensed representation of frequent patterns for efficient mining
    • Bykowski A, Rigotti C (2003) Dbc: A condensed representation of frequent patterns for efficient mining. Inform Syst 28 (8):949-977
    • (2003) Inform Syst , vol.28 , Issue.8 , pp. 949-977
    • Bykowski, A.1    Rigotti, C.2
  • 11
    • 0142012105 scopus 로고    scopus 로고
    • Application of a data mining technique to analyze coprescription patterns for antacids in Taiwan
    • Chen T, Chou L, Hwang S (2003) Application of a data mining technique to analyze coprescription patterns for antacids in Taiwan. Clin Ther 25 (9):2453-2463
    • (2003) Clin Ther , vol.25 , Issue.9 , pp. 2453-2463
    • Chen, T.1    Chou, L.2    Hwang, S.3
  • 15
    • 0037245822 scopus 로고    scopus 로고
    • Mining gene expression databases for association rules
    • Creighton C, Hanash S (2003) Mining gene expression databases for association rules. Bioinformatics 19 (1):79-86
    • (2003) Bioinformatics , vol.19 , Issue.1 , pp. 79-86
    • Creighton, C.1    Hanash, S.2
  • 16
    • 78149312575 scopus 로고    scopus 로고
    • Generating an informative cover for association rules
    • ICDM
    • Cristofor L, Simovici D (2002) Generating an informative cover for association rules. ICDM, pp 597-600
    • (2002) , pp. 597-600
    • Cristofor, L.1    Simovici, D.2
  • 17
    • 0035178849 scopus 로고    scopus 로고
    • Mining association rules with improved semantics in medical databases
    • Delgado M, Sanchez D, Martin-Bautista M, Vila M (2001) Mining association rules with improved semantics in medical databases. Artif Intell Med 21 (1-3):241-245
    • (2001) Artif Intell Med , vol.21 , Issue.1-3 , pp. 241-245
    • Delgado, M.1    Sanchez, D.2    Martin-Bautista, M.3    Vila, M.4
  • 18
    • 0034571583 scopus 로고    scopus 로고
    • Mining association rules from a pediatric primary care decision support system
    • Down S, Wallace M (2000) Mining association rules from a pediatric primary care decision support system. In: Proceedings of AMIA symposium, pp 200-204
    • (2000) Proceedings of AMIA Symposium , pp. 200-204
    • Down, S.1    Wallace, M.2
  • 19
    • 0027681707 scopus 로고
    • Perfex: An expert system for interpreting myocardial perfusion
    • Ezquerra N, Mullick R (1993) Perfex: An expert system for interpreting myocardial perfusion. Expert Syst Appl 6: 455-468
    • (1993) Expert Syst Appl , vol.6 , pp. 455-468
    • Ezquerra, N.1    Mullick, R.2
  • 20
    • 0038309917 scopus 로고    scopus 로고
    • Evaluation of a cardiac diagnostic program in a typical clinical setting
    • Fraser H, Long W, Naimi S (2003) Evaluation of a cardiac diagnostic program in a typical clinical setting. J Am Med Inform Assoc (JAMIA) 10 (4):373-381
    • (2003) J Am Med Inform Assoc (JAMIA) , vol.10 , Issue.4 , pp. 373-381
    • Fraser, H.1    Long, W.2    Naimi, S.3
  • 21
    • 0242647897 scopus 로고    scopus 로고
    • Understanding the crucial differences between classification and association rules -- A position paper
    • Freitas A (2000) Understanding the crucial differences between classification and association rules--a position paper. SIGKDD Explor 2 (1):65-69
    • (2000) SIGKDD Explor , vol.2 , Issue.1 , pp. 65-69
    • Freitas, A.1
  • 22
    • 12344335874 scopus 로고    scopus 로고
    • Efficient closed pattern mining in the presence of tough block constraints
    • ACM KDD Conference
    • Gade K, Wan J, Karypis G (2004) Efficient closed pattern mining in the presence of tough block constraints. ACM KDD conference, pp 138-147
    • (2004) , pp. 138-147
    • Gade, K.1    Wan, J.2    Karypis, G.3
  • 23
    • 78149351437 scopus 로고    scopus 로고
    • Efficiently mining maximal frequent itemsets
    • ICDM Conference
    • Gouda K, Zaki M (2001) Efficiently mining maximal frequent itemsets. ICDM conference, pp 163-170
    • (2001) , pp. 163-170
    • Gouda, K.1    Zaki, M.2
  • 24
    • 0030399010 scopus 로고    scopus 로고
    • Background for association rules and cost estimate of selected mining algorithms
    • ACM CIKM
    • Han J (1996a) Background for association rules and cost estimate of selected mining algorithms. ACM CIKM, pp 73-80
    • (1996) , pp. 73-80
    • Han, J.1
  • 25
    • 85077806646 scopus 로고    scopus 로고
    • Pushing constraints in templates for mining association rules
    • Florida AI Research Symposium
    • Han J (1996b) Pushing constraints in templates for mining association rules. Florida AI research symposium, pp 375-379
    • (1996) , pp. 375-379
    • Han, J.1
  • 27
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • ACM SIGMOD Conference
    • Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. ACM SIGMOD Conference, pp 1-12
    • (2000) , pp. 1-12
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 29
    • 0003113325 scopus 로고
    • Finding interesting rules from large sets of discovered association rules
    • ACM CIKM
    • Klemettinen M, Mannila H, Ronkainen P, Toivonen H, Verkamo A (1994) Finding interesting rules from large sets of discovered association rules. ACM CIKM, pp 401-407
    • (1994) , pp. 401-407
    • Klemettinen, M.1    Mannila, H.2    Ronkainen, P.3    Toivonen, H.4    Verkamo, A.5
  • 30
    • 0038122164 scopus 로고    scopus 로고
    • Concise representation of frequent patterns based on disjunction-free generators
    • Kryszkiewicz M (2001) Concise representation of frequent patterns based on disjunction-free generators. IEEE ICDM conference, pp 305-312
    • (2001) IEEE ICDM Conference , pp. 305-312
    • Kryszkiewicz, M.1
  • 31
    • 2442604532 scopus 로고    scopus 로고
    • Reducing borders of k-disjunction free representations of frequent patterns
    • ACM SAC Conference
    • Kryszkiewicz M (2004) Reducing borders of k-disjunction free representations of frequent patterns. ACM SAC conference, pp 559-563
    • (2004) , pp. 559-563
    • Kryszkiewicz, M.1
  • 32
    • 0347087668 scopus 로고    scopus 로고
    • Optimization of constrained frequent set queries with 2-variable constraints
    • ACM SIGMOD Conference
    • Lakshmanan LV, Ng R, Han J, Pang A (1999) Optimization of constrained frequent set queries with 2-variable constraints. ACM SIGMOD conference, pp 157-168
    • (1999) , pp. 157-168
    • Lakshmanan, L.V.1    Ng, R.2    Han, J.3    Pang, A.4
  • 33
    • 0030643619 scopus 로고    scopus 로고
    • Clustering association rules
    • IEEE ICDE Conference
    • Lent B, Swami A, Widom J (1997) Clustering association rules. IEEE ICDE conference, pp 220-231
    • (1997) , pp. 220-231
    • Lent, B.1    Swami, A.2    Widom, J.3
  • 34
    • 84890521199 scopus 로고    scopus 로고
    • Pincer-search: A new algorithm for discovering the maximum frequent itemset
    • EDBT Conference
    • Lin D, Kedem Z (1998) Pincer-search: A new algorithm for discovering the maximum frequent itemset. EDBT conference, pp 105-119
    • (1998) , pp. 105-119
    • Lin, D.1    Kedem, Z.2
  • 35
    • 0024880812 scopus 로고
    • Medical reasoning using a probabilistic network
    • Long W (1989) Medical reasoning using a probabilistic network. Appl Artif Intell 3: 367-383
    • (1989) Appl Artif Intell , vol.3 , pp. 367-383
    • Long, W.1
  • 36
    • 0031149979 scopus 로고    scopus 로고
    • Reasoning requirements for diagnosis of heart disease
    • Long W, Fraser H, Naimi S (1997) Reasoning requirements for diagnosis of heart disease. Artif Intell Med 10 (1):5-24
    • (1997) Artif Intell Med , vol.10 , Issue.1 , pp. 5-24
    • Long, W.1    Fraser, H.2    Naimi, S.3
  • 37
    • 0032092760 scopus 로고    scopus 로고
    • Exploratory mining and pruning optimizations of constrained association rules
    • ACM SIGMOD Conference
    • Ng R, Lakshmanan L, Han J (1998) Exploratory mining and pruning optimizations of constrained association rules. ACM SIGMOD conference, pp 13-24
    • (1998) , pp. 13-24
    • Ng, R.1    Lakshmanan, L.2    Han, J.3
  • 38
    • 33845579241 scopus 로고    scopus 로고
    • Mining constrained association rules to predict heart disease
    • IEEE ICDM Conference
    • Ordonez C, Omiecinski E, de Braal L, Santana C, Ezquerra N (2001) Mining constrained association rules to predict heart disease. IEEE ICDM conference, pp 433-440
    • (2001) , pp. 433-440
    • Ordonez, C.1    Omiecinski, E.2    de Braal, L.3    Santana, C.4    Ezquerra, N.5
  • 39
    • 0005651988 scopus 로고    scopus 로고
    • Discovering interesting association rules in medical data
    • ACM DMKD Workshop
    • Ordonez C, Santana C, Braal L (2000) Discovering interesting association rules in medical data. ACM DMKD workshop, pp 78-85
    • (2000) , pp. 78-85
    • Ordonez, C.1    Santana, C.2    Braal, L.3
  • 40
    • 0036083294 scopus 로고    scopus 로고
    • Extraction of knowledge on protein-protein interaction by association rule discovery
    • Oyama T, Kitano K, Satou T, Ito T (2002) Extraction of knowledge on protein-protein interaction by association rule discovery. Bioinformatics 18 (5):705-714
    • (2002) Bioinformatics , vol.18 , Issue.5 , pp. 705-714
    • Oyama, T.1    Kitano, K.2    Satou, T.3    Ito, T.4
  • 41
    • 84911977993 scopus 로고    scopus 로고
    • Discovering frequent closed itemsets for association rules
    • ICDT Conference
    • Pasquier N, Bastide Y, Taouil RG, Lakhal L (1999) Discovering frequent closed itemsets for association rules. ICDT conference, pp 398-416
    • (1999) , pp. 398-416
    • Pasquier, N.1    Bastide, Y.2    Taouil, R.G.3    Lakhal, L.4
  • 42
    • 0346561036 scopus 로고    scopus 로고
    • Constraints in data mining: Constrained frequent pattern mining: A pattern-growth view
    • Pei J, Han J (2002) Constraints in data mining: Constrained frequent pattern mining: A pattern-growth view. SIGKDD Explor 4 (1):31-39
    • (2002) SIGKDD Explor , vol.4 , Issue.1 , pp. 31-39
    • Pei, J.1    Han, J.2
  • 43
    • 0002625450 scopus 로고    scopus 로고
    • CLOSET: An efficient algorithm for mining frequent closed itemsets
    • ACM DMKD Workshop
    • Pei J, Han J, Mao R (2000) CLOSET: An efficient algorithm for mining frequent closed itemsets. ACM DMKD workshop, pp 21-30
    • (2000) , pp. 21-30
    • Pei, J.1    Han, J.2    Mao, R.3
  • 44
    • 11944266142 scopus 로고    scopus 로고
    • The representative basis for association rules
    • Phan-Luong V (2001) The representative basis for association rules. IEEE ICDM, pp 639-640
    • (2001) IEEE ICDM , pp. 639-640
    • Phan-Luong, V.1
  • 45
    • 7444224695 scopus 로고    scopus 로고
    • Reducing rule covers with deterministic error bounds
    • PAKDD Conference
    • Pudi V, Haritsa J (2003) Reducing rule covers with deterministic error bounds. PAKDD conference, pp 313-324
    • (2003) , pp. 313-324
    • Pudi, V.1    Haritsa, J.2
  • 46
    • 0031675159 scopus 로고    scopus 로고
    • Mining optimized association rules with categorical and numeric attributes
    • IEEE ICDE Conference
    • Rastogi R, Shim K (1998) Mining optimized association rules with categorical and numeric attributes. IEEE ICDE conference, pp 503-512
    • (1998) , pp. 503-512
    • Rastogi, R.1    Shim, K.2
  • 47
    • 33645548158 scopus 로고    scopus 로고
    • Exploratory medical knowledge discovery: Experiences and issues
    • Roddick J, Fule P, Graco W (2003) Exploratory medical knowledge discovery: Experiences and issues. SIGKDD Explor 5 (1):94-99
    • (2003) SIGKDD Explor , vol.5 , Issue.1 , pp. 94-99
    • Roddick, J.1    Fule, P.2    Graco, W.3
  • 48
    • 0002880407 scopus 로고
    • Mining generalized association rules
    • VLDB Conference
    • Srikant R, Agrawal R (1995) Mining generalized association rules. VLDB conference, pp 407-419
    • (1995) , pp. 407-419
    • Srikant, R.1    Agrawal, R.2
  • 49
    • 0030157416 scopus 로고    scopus 로고
    • Mining quantitative association rules in large relational tables
    • ACM SIGMOD Conference
    • Srikant R, Agrawal R (1996) Mining quantitative association rules in large relational tables. ACM SIGMOD conference, pp 1-12
    • (1996) , pp. 1-12
    • Srikant, R.1    Agrawal, R.2
  • 50
    • 85162588849 scopus 로고    scopus 로고
    • Mining association rules with item constraints
    • ACM KDD Conference
    • Srikant R, Vu Q, Agrawal R (1997) Mining association rules with item constraints. ACM KDD conference, pp 67-73
    • (1997) , pp. 67-73
    • Srikant, R.1    Vu, Q.2    Agrawal, R.3
  • 51
    • 0033905505 scopus 로고    scopus 로고
    • Mining bases for association rules using closed sets
    • IEEE ICDE Conference
    • Taouil R, Pasquier N, Bastide Y, Lakhal L (2000) Mining bases for association rules using closed sets. IEEE ICDE conference, p 307
    • (2000) , pp. 307
    • Taouil, R.1    Pasquier, N.2    Bastide, Y.3    Lakhal, L.4
  • 52
    • 0037619022 scopus 로고    scopus 로고
    • Pushing support constraints into association rules mining
    • Wang K, He Y, Han J (2003) Pushing support constraints into association rules mining. IEEE TKDE 15 (3):642-658
    • (2003) IEEE TKDE , vol.15 , Issue.3 , pp. 642-658
    • Wang, K.1    He, Y.2    Han, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.