메뉴 건너뛰기




Volumn 15, Issue 2, 2005, Pages 135-147

New sequential Monte Carlo methods for nonlinear dynamic systems

Author keywords

Bayesian inference; Kernel representation; Nonlinear dynamic system; Sequential Monte Carlo

Indexed keywords


EID: 17444403965     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-005-6846-5     Document Type: Article
Times cited : (43)

References (30)
  • 1
    • 0032715170 scopus 로고    scopus 로고
    • Statistics of the RSS estiamtion algorithm for gaussian measurement noise
    • C.S. Agate R. Iltis 1999 Statistics of the RSS estiamtion algorithm for gaussian measurement noise IEEE Trans. on Sign. Proc. 47 1 22 32 Agate C.S. and Iltis R. 1999. Statistics of the RSS estiamtion algorithm for gaussian measurement noise. IEEE Trans. on Sign. Proc. 47(1): 22–32.
    • (1999) IEEE Trans. on Sign. Proc. , vol.47 , Issue.1 , pp. 22-32
    • Agate, C.S.1    Iltis, R.2
  • 2
    • 0015385037 scopus 로고
    • Nonlinear bayesian estimation using the gaussian sum approximation
    • D.L. Alspace H.W. Sorenson 1972 Nonlinear bayesian estimation using the gaussian sum approximation IEEE Transaction on Automatic Control 17 439 448 Alspace D.L. and Sorenson H.W. 1972. Nonlinear bayesian estimation using the gaussian sum approximation. IEEE Transaction on Automatic Control 17: 439–448.
    • (1972) IEEE Transaction on Automatic Control , vol.17 , pp. 439-448
    • Alspace, D.L.1    Sorenson, H.W.2
  • 3
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filter for on-line non-linear/non-gaussian bayesian tracking
    • S. Arulampalam S. Maskell N. Gordan T. Clapp 2002 A tutorial on particle filter for on-line non-linear/non-gaussian bayesian tracking IEEE Trans. Sig. Proc. 50 2 174 188 Arulampalam S., Maskell S., Gordan N., and Clapp T. 2002. A tutorial on particle filter for on-line non-linear/non-gaussian bayesian tracking. IEEE Trans. Sig. Proc. 50(2): 174–188.
    • (2002) IEEE Trans. Sig. Proc. , vol.50 , Issue.2 , pp. 174-188
    • Arulampalam, S.1    Maskell, S.2    Gordan, N.3    Clapp, T.4
  • 4
    • 0029289453 scopus 로고
    • A stochastic simulation Bayesian approach to multitarget tracking
    • D. Avitzour 1995 A stochastic simulation Bayesian approach to multitarget tracking lEE Proceedings on Radar, Sonar and Navigation 142 41 44 Avitzour D. 1995. A stochastic simulation Bayesian approach to multitarget tracking. lEE Proceedings on Radar, Sonar and Navigation 142: 41–44.
    • (1995) lEE Proceedings on Radar, Sonar and Navigation , vol.142 , pp. 41-44
    • Avitzour, D.1
  • 5
    • 0034486690 scopus 로고    scopus 로고
    • Nonlinear multiuser parameter estimation and tracking CDMA system
    • J. Caffery G.L. Stuber 2000 Nonlinear multiuser parameter estimation and tracking CDMA system IEEE Trans. on Commun. 48 12 2053 2063 Caffery J. and Stuber G.L. 2000. Nonlinear multiuser parameter estimation and tracking CDMA system. IEEE Trans. on Commun. 48(12): 2053–2063.
    • (2000) IEEE Trans. on Commun. , vol.48 , Issue.12 , pp. 2053-2063
    • Caffery, J.1    Stuber, G.L.2
  • 6
    • 0034355022 scopus 로고    scopus 로고
    • Mixture Kalman filters
    • R. Chen J.S. Liu 2000 Mixture Kalman filters Journal of the Royal Statistical Society, Series B 62 493 509 Chen R. and Liu J.S. 2000. Mixture Kalman filters. Journal of the Royal Statistical Society, Series B 62: 493–509.
    • (2000) Journal of the Royal Statistical Society, Series B , vol.62 , pp. 493-509
    • Chen, R.1    Liu, J.S.2
  • 7
    • 0034269446 scopus 로고    scopus 로고
    • Adaptive joint detection and decoding in flat-fading channels via mixture Kalman filtering
    • R. Chen X. Wang J.S. Liu 2000 Adaptive joint detection and decoding in flat-fading channels via mixture Kalman filtering IEEE Trans. Inform. Theory 46 6 2079 2094 Chen R., Wang X., and Liu J.S. 2000. Adaptive joint detection and decoding in flat-fading channels via mixture Kalman filtering. IEEE Trans. Inform. Theory 46(6): 2079–2094.
    • (2000) IEEE Trans. Inform. Theory , vol.46 , Issue.6 , pp. 2079-2094
    • Chen, R.1    Wang, X.2    Liu, J.S.3
  • 8
    • 85121069808 scopus 로고    scopus 로고
    • Dellaert F., Fox D., Burgard W., and Thrun S. 1999. Monte Carlo localization for mobile robots. In ICRA.
  • 9
    • 85121071475 scopus 로고    scopus 로고
    • Dellaert F., Fox D., Burgard W., and Thrun S. 1999. Using the condensation algorithm for robust, vision-based mobile robot localization. In CVPR.
  • 10
    • 85121066824 scopus 로고    scopus 로고
    • Doucet A., Dreitas N.D., Murphy K., and Russell S. 2000. Rao-blackwellised particle filtering for dynamic bayesian networks. In Sixteenth Conference on Uncertainty in Artificial intelligence, Stanford, pp. 176–183.
  • 11
    • 85121064312 scopus 로고    scopus 로고
    • Doucet A., de Freitas J.F.G., and Gordon N. 2001. Sequential Monte Carlo in Practice. Cambridge University Press.
  • 12
    • 0001460136 scopus 로고    scopus 로고
    • On sequential simulation-based methods for Bayesian filtering
    • A. Doucet S.J. Godsill C. Andrieu 2000 On sequential simulation-based methods for Bayesian filtering Statisti. Comput. 10 3 197 208 Doucet A., Godsill S.J., and Andrieu C. 2000. On sequential simulation-based methods for Bayesian filtering. Statisti. Comput. 10(3): 197–208.
    • (2000) Statisti. Comput. , vol.10 , Issue.3 , pp. 197-208
    • Doucet, A.1    Godsill, S.J.2    Andrieu, C.3
  • 13
    • 0029408930 scopus 로고
    • Bayesian state estimation for tracking and guidance using the bootstrap filter
    • N.J. Gordon D.J. Salmon C.M. Ewing 1995 Bayesian state estimation for tracking and guidance using the bootstrap filter AIAA Journal of Guidance, Control and Dynamics 18 1434 1443 Gordon N.J., Salmon D.J., and Ewing C.M. 1995. Bayesian state estimation for tracking and guidance using the bootstrap filter. AIAA Journal of Guidance, Control and Dynamics 18: 1434–1443.
    • (1995) AIAA Journal of Guidance, Control and Dynamics , vol.18 , pp. 1434-1443
    • Gordon, N.J.1    Salmon, D.J.2    Ewing, C.M.3
  • 14
    • 0242440688 scopus 로고    scopus 로고
    • Numerical integration using sparse grids
    • T. Gerstner M. Griebel 1998 Numerical integration using sparse grids Numerical Algorithms 18 4 209 232 Gerstner T. and Griebel M. 1998. Numerical integration using sparse grids. Numerical Algorithms 18(4): 209–232.
    • (1998) Numerical Algorithms , vol.18 , Issue.4 , pp. 209-232
    • Gerstner, T.1    Griebel, M.2
  • 15
    • 0039816272 scopus 로고    scopus 로고
    • Monte Carlo techniques for prediction and filtering of non-linear stochastic processes
    • J.E. Handschin 2003 Monte Carlo techniques for prediction and filtering of non-linear stochastic processes Atomatica 1970 6 555 563 Handschin J.E. 2003. Monte Carlo techniques for prediction and filtering of non-linear stochastic processes. Atomatica, 1970(6): 555–563.
    • (2003) Atomatica , vol.1970 , Issue.6 , pp. 555-563
    • Handschin, J.E.1
  • 16
    • 85121078782 scopus 로고    scopus 로고
    • Isard M. and Blake A. 1997. A mixed-state Condensation tracker with automatic model switching. In ECCV.
  • 17
    • 0032136153 scopus 로고    scopus 로고
    • Condensation—conditional density propogation for visual tracking
    • M. Isard A. Blake 1998 Condensation—conditional density propogation for visual tracking In IJCV 29 5 28 Isard M. and Blake A. 1998. Condensation—conditional density propogation for visual tracking. In IJCV, vol. 29, pp. 5–28.
    • (1998) In IJCV , vol.29 , pp. 5-28
    • Isard, M.1    Blake, A.2
  • 18
    • 0034186948 scopus 로고    scopus 로고
    • Gaussian filters for nonlinear filtering problems
    • K. Ito K. Xiong 2000 Gaussian filters for nonlinear filtering problems IEEE Transaction on Automatic Control 45 5 910 827 Ito K. and Xiong K. 2000. Gaussian filters for nonlinear filtering problems. IEEE Transaction on Automatic Control 45(5): 910–827.
    • (2000) IEEE Transaction on Automatic Control , vol.45 , Issue.5 , pp. 910-827
    • Ito, K.1    Xiong, K.2
  • 19
    • 84950943564 scopus 로고
    • Sequential imputations and Bayesian missing data problems
    • A. Kong J.S. Liu W.H. Wong 1994 Sequential imputations and Bayesian missing data problems J. Amer. Statist. Assoc 89 278 288 Kong A., Liu J.S., and Wong W.H. 1994. Sequential imputations and Bayesian missing data problems. J. Amer. Statist. Assoc 89: 278–288.
    • (1994) J. Amer. Statist. Assoc , vol.89 , pp. 278-288
    • Kong, A.1    Liu, J.S.2    Wong, W.H.3
  • 20
    • 0004182828 scopus 로고    scopus 로고
    • Monte Carlo Strategies for Scientific Computing
    • J.S. Liu 2001 Monte Carlo Strategies for Scientific Computing Springer-Verlag New York Liu J.S. 2001. Monte Carlo Strategies for Scientific Computing. Springer-Verlag, New York.
    • (2001)
    • Liu, J.S.1
  • 21
    • 84950943371 scopus 로고
    • Blind deconvolution via sequential imputations
    • J.S. Liu R. Chen 1995 Blind deconvolution via sequential imputations Journal of the American Statistical Association 90 567 576 Liu J.S. and Chen R. 1995. Blind deconvolution via sequential imputations. Journal of the American Statistical Association 90: 567–576.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 567-576
    • Liu, J.S.1    Chen, R.2
  • 22
    • 0032359151 scopus 로고    scopus 로고
    • Sequential Monte Carlo methods for dynamic systems
    • J.S. Liu R. Chen 1998 Sequential Monte Carlo methods for dynamic systems Journal of the American Statistical Association 93 1032 1044 Liu J.S. and Chen R. 1998. Sequential Monte Carlo methods for dynamic systems. Journal of the American Statistical Association 93: 1032–1044.
    • (1998) Journal of the American Statistical Association , vol.93 , pp. 1032-1044
    • Liu, J.S.1    Chen, R.2
  • 23
    • 85121082506 scopus 로고    scopus 로고
    • Minka T.P. 2001. Expectation propagation for approximate bayesian inference. In Uncertainty in AP01.
  • 24
    • 0035606625 scopus 로고    scopus 로고
    • Fast calculation of coefficients in the Smolyak algorithm
    • K. Petras 2001 Fast calculation of coefficients in the Smolyak algorithm Numerical Algorithms 26 2 93 109 Petras K. 2001. Fast calculation of coefficients in the Smolyak algorithm. Numerical Algorithms 26(2): 93–109.
    • (2001) Numerical Algorithms , vol.26 , Issue.2 , pp. 93-109
    • Petras, K.1
  • 25
    • 1542427941 scopus 로고    scopus 로고
    • Filtering via simulation: auxiliary particle filters
    • M.K. Pitt N. Shephard 1999 Filtering via simulation: auxiliary particle filters J. Amer. Statist. Assoc. 94 446 590 601 Pitt M.K. and Shephard N. 1999. Filtering via simulation: auxiliary particle filters. J. Amer. Statist. Assoc. 94(446): 590–601.
    • (1999) J. Amer. Statist. Assoc. , vol.94 , Issue.446 , pp. 590-601
    • Pitt, M.K.1    Shephard, N.2
  • 26
    • 0004161838 scopus 로고
    • Numerical Recipes in C: The Art of Scientific Computing
    • W. Press S. Teukolsky W. Vetterling B.P. Flannery 1992 Numerical Recipes in C: The Art of Scientific Computing 2 Cambridge Press London Press W., Teukolsky S., Vetterling W., and Flannery B.P. 1992. Numerical Recipes in C: The Art of Scientific Computing, 2nd edition. Cambridge Press, London.
    • (1992)
    • Press, W.1    Teukolsky, S.2    Vetterling, W.3    Flannery, B.P.4
  • 27
    • 0003258788 scopus 로고    scopus 로고
    • Likelihood analysis of non-gaussian measurement time series
    • N. Shephard M.K. Pitt 1997 Likelihood analysis of non-gaussian measurement time series Biometrika 84 653 667 Shephard N. and Pitt M.K. 1997. Likelihood analysis of non-gaussian measurement time series. Biometrika 84: 653–667.
    • (1997) Biometrika , vol.84 , pp. 653-667
    • Shephard, N.1    Pitt, M.K.2
  • 28
    • 0003443397 scopus 로고
    • Density Estimation for Statistics and Data Analysis
    • B.W. Silverman 1986 Density Estimation for Statistics and Data Analysis Chapman and Hall New York Silverman B.W. 1986. Density Estimation for Statistics and Data Analysis. Chapman and Hall, New York.
    • (1986)
    • Silverman, B.W.1
  • 29
    • 85121069085 scopus 로고    scopus 로고
    • Thrun S., Dellaert F., Fox D., and Burgard W. 2001. Robust Monte Carlo localization for mobile robots. In Artifical Intelligence Journel.
  • 30
    • 85121087206 scopus 로고    scopus 로고
    • Vlasis N., Terwijn B., and Krose B. 2002. Auxiliary partifcle filter robot localization from high-dimensional sensor observations. In IEEE Int. Conf. on Robots and Automation, Wahsington D.C., pp. 7–12.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.