-
1
-
-
33244461073
-
Stability of stochastic approximation under verifiable conditions
-
Andrieu C., Moulines É., and Priouret P. Stability of stochastic approximation under verifiable conditions. SIAM J. Control Optim. 44 (2005) 283-312
-
(2005)
SIAM J. Control Optim.
, vol.44
, pp. 283-312
-
-
Andrieu, C.1
Moulines, É.2
Priouret, P.3
-
2
-
-
58549089515
-
-
Bouckaert, R.R., 1995. Bayesian belief networks: From construction to inference. Ph.D. Thesis, University of Utrecht
-
Bouckaert, R.R., 1995. Bayesian belief networks: From construction to inference. Ph.D. Thesis, University of Utrecht
-
-
-
-
4
-
-
0001019707
-
Learning Bayesian networks is NP-complete
-
Fisher D., and Lenz H.-J. (Eds), Springer-Verlag, New York
-
Chickering D.M. Learning Bayesian networks is NP-complete. In: Fisher D., and Lenz H.-J. (Eds). Learning from Data: Artificial Intelligence and Statistics V (1996), Springer-Verlag, New York 121-130
-
(1996)
Learning from Data: Artificial Intelligence and Statistics V
, pp. 121-130
-
-
Chickering, D.M.1
-
5
-
-
0031354418
-
CLIP3: Cover learning using integer programming
-
Cios K.J., Wedding D.K., and Liu N. CLIP3: Cover learning using integer programming. Kybernetes 26 (1997) 513-536
-
(1997)
Kybernetes
, vol.26
, pp. 513-536
-
-
Cios, K.J.1
Wedding, D.K.2
Liu, N.3
-
6
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper G.F., and Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9 (1992) 309-347
-
(1992)
Mach. Learn.
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
8
-
-
0034174383
-
A new approach for learning belief networks using independence criteria
-
de Campos L.M., and Huete J.F. A new approach for learning belief networks using independence criteria. Int. J. Approx. Reason 24 (2000) 11-37
-
(2000)
Int. J. Approx. Reason
, vol.24
, pp. 11-37
-
-
de Campos, L.M.1
Huete, J.F.2
-
9
-
-
49549100459
-
Learning causal Bayesian network structures from experimental data
-
Ellis B., and Wong W.H. Learning causal Bayesian network structures from experimental data. J. Amer. Statist. Assoc. 103 (2008) 778-789
-
(2008)
J. Amer. Statist. Assoc.
, vol.103
, pp. 778-789
-
-
Ellis, B.1
Wong, W.H.2
-
10
-
-
58549088509
-
-
Fayyad, U., Irani, K., 1993. Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of International Joint Conference on Artificial Intelligence. Chambery, France, pp. 1022-1027
-
Fayyad, U., Irani, K., 1993. Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of International Joint Conference on Artificial Intelligence. Chambery, France, pp. 1022-1027
-
-
-
-
12
-
-
0037262841
-
Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks
-
Friedman N., and Koller D. Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks. Mach. Learn. 50 (2003) 95-125
-
(2003)
Mach. Learn.
, vol.50
, pp. 95-125
-
-
Friedman, N.1
Koller, D.2
-
13
-
-
0001667705
-
Bayesian inference in econometric models using Monte Carlo integration
-
Geweke J. Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57 (1989) 1317-1339
-
(1989)
Econometrica
, vol.57
, pp. 1317-1339
-
-
Geweke, J.1
-
14
-
-
0001099335
-
Decomposable graphical Gaussian model determination
-
Giudici P., and Green P. Decomposable graphical Gaussian model determination. Biometrika 86 (1999) 785-801
-
(1999)
Biometrika
, vol.86
, pp. 785-801
-
-
Giudici, P.1
Green, P.2
-
15
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Heckerman D., Geiger D., and Chickering D.M. Learning Bayesian networks: The combination of knowledge and statistical data. Mach. Learn. 20 (1995) 197-243
-
(1995)
Mach. Learn.
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
16
-
-
58549108221
-
-
Herskovits, E., Cooper, G.F., 1990. Kutato ́: An entropy-driven system for the construction of probabilistic expert systems from datasets. In: Bonissone P. (Ed.), Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence, Cambridge, pp. 54-62
-
Herskovits, E., Cooper, G.F., 1990. Kutato ́: An entropy-driven system for the construction of probabilistic expert systems from datasets. In: Bonissone P. (Ed.), Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence, Cambridge, pp. 54-62
-
-
-
-
18
-
-
0034807546
-
Knowledge discovery approach to automated cardiac SPECT diagnosis
-
Kurgan L.A., Cios K.J., Tadeusiewicz R., Ogiela M., and Goodenday L.S. Knowledge discovery approach to automated cardiac SPECT diagnosis. Artif. Intell. Med. 23 (2001) 149-169
-
(2001)
Artif. Intell. Med.
, vol.23
, pp. 149-169
-
-
Kurgan, L.A.1
Cios, K.J.2
Tadeusiewicz, R.3
Ogiela, M.4
Goodenday, L.S.5
-
19
-
-
0028482006
-
Learning Bayesian belief networks: An approach based on the MDL principle
-
Lam W., and Bacchus F. Learning Bayesian belief networks: An approach based on the MDL principle. Comput. Intell. 10 (1994) 269-293
-
(1994)
Comput. Intell.
, vol.10
, pp. 269-293
-
-
Lam, W.1
Bacchus, F.2
-
20
-
-
0036744537
-
Dynamically weighted importance sampling in Monte Carlo computation
-
Liang F. Dynamically weighted importance sampling in Monte Carlo computation. J. Amer. Statist. Assoc. 97 (2002) 807-821
-
(2002)
J. Amer. Statist. Assoc.
, vol.97
, pp. 807-821
-
-
Liang, F.1
-
21
-
-
59349103112
-
-
Liang, F., 2008. On the use of stochastic approximation Monte Carlo for Monte Carlo Integration. Statist. Probab. Lett., in press (doi:10.1016/j.spl.2008.10.007)
-
Liang, F., 2008. On the use of stochastic approximation Monte Carlo for Monte Carlo Integration. Statist. Probab. Lett., in press (doi:10.1016/j.spl.2008.10.007)
-
-
-
-
22
-
-
33947215681
-
Stochastic approximation in Monte Carlo computation
-
Liang F., Liu C., and Carroll R.J. Stochastic approximation in Monte Carlo computation. J. Amer. Statist. Assoc. 102 (2007) 305-320
-
(2007)
J. Amer. Statist. Assoc.
, vol.102
, pp. 305-320
-
-
Liang, F.1
Liu, C.2
Carroll, R.J.3
-
24
-
-
84950945692
-
Model selection and accounting for model uncertainty in graphical models using Occam's window
-
Madigan D., and Raftery E. Model selection and accounting for model uncertainty in graphical models using Occam's window. J. Amer. Statist. Assoc. 89 (1994) 1535-1546
-
(1994)
J. Amer. Statist. Assoc.
, vol.89
, pp. 1535-1546
-
-
Madigan, D.1
Raftery, E.2
-
25
-
-
21844520724
-
Bayesian graphical models for discrete data
-
Madigan D., and York J. Bayesian graphical models for discrete data. Internat. Statist. Rev. 63 (1995) 215-232
-
(1995)
Internat. Statist. Rev.
, vol.63
, pp. 215-232
-
-
Madigan, D.1
York, J.2
-
26
-
-
0002039637
-
Cancer diagnosis via linear programming
-
Mangasarian O.L., and Wolberg W.H. Cancer diagnosis via linear programming. SIAM News 23 (1990) 1-18
-
(1990)
SIAM News
, vol.23
, pp. 1-18
-
-
Mangasarian, O.L.1
Wolberg, W.H.2
-
29
-
-
0000016172
-
A stochastic approximation method
-
Robbins H., and Monro S. A stochastic approximation method. Ann. Math. Statist. 22 (1951) 400-407
-
(1951)
Ann. Math. Statist.
, vol.22
, pp. 400-407
-
-
Robbins, H.1
Monro, S.2
-
30
-
-
33746388444
-
Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms
-
Roberts G.O., and Tweedie R.L. Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms. Biometrika 83 (1996) 95-110
-
(1996)
Biometrika
, vol.83
, pp. 95-110
-
-
Roberts, G.O.1
Tweedie, R.L.2
-
31
-
-
0003614273
-
-
Springer-Verlag, New York
-
Spirtes P., Glymour C., and Scheines R. Causation, Prediction and Search (1993), Springer-Verlag, New York
-
(1993)
Causation, Prediction and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
32
-
-
0344128502
-
Learning linear causal models by MML sampling
-
Gammerman A. (Ed), Springer-Verlag, Heidelberg
-
Wallace C.S., and Korb K.B. Learning linear causal models by MML sampling. In: Gammerman A. (Ed). Causal Models and Intelligent Data Management (1999), Springer-Verlag, Heidelberg
-
(1999)
Causal Models and Intelligent Data Management
-
-
Wallace, C.S.1
Korb, K.B.2
-
33
-
-
33749385876
-
Learning Bayesian networks structure with continuous variables
-
Li X., Zaiane O.R., and Li Z. (Eds), Springer-Verlag, Heidelberg
-
Wang S., Li X., and Tang H. Learning Bayesian networks structure with continuous variables. In: Li X., Zaiane O.R., and Li Z. (Eds). Lecture Notes in Computer Science vol. 4093 (2006), Springer-Verlag, Heidelberg 448-456
-
(2006)
Lecture Notes in Computer Science
, vol.4093
, pp. 448-456
-
-
Wang, S.1
Li, X.2
Tang, H.3
-
34
-
-
0000243504
-
Graphical and recursive models for contingency tables
-
Wermuth N., and Lauritzen S. Graphical and recursive models for contingency tables. Biometrika 72 (1983) 537-552
-
(1983)
Biometrika
, vol.72
, pp. 537-552
-
-
Wermuth, N.1
Lauritzen, S.2
-
35
-
-
0031447220
-
Dynamic weighting in Monte Carlo and optimization
-
Wong W.H., and Liang F. Dynamic weighting in Monte Carlo and optimization. Proc. Natl. Acad. Sci. USA 94 (1997) 14220-14224
-
(1997)
Proc. Natl. Acad. Sci. USA
, vol.94
, pp. 14220-14224
-
-
Wong, W.H.1
Liang, F.2
|