메뉴 건너뛰기




Volumn 53, Issue 4, 2009, Pages 865-876

Learning Bayesian networks for discrete data

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION ALGORITHMS; APPROXIMATION THEORY; CHANNEL CAPACITY; DISTRIBUTED PARAMETER NETWORKS; INFERENCE ENGINES; INTELLIGENT NETWORKS; LEARNING ALGORITHMS; SPEECH ANALYSIS;

EID: 58549098419     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2008.10.007     Document Type: Article
Times cited : (24)

References (35)
  • 1
    • 33244461073 scopus 로고    scopus 로고
    • Stability of stochastic approximation under verifiable conditions
    • Andrieu C., Moulines É., and Priouret P. Stability of stochastic approximation under verifiable conditions. SIAM J. Control Optim. 44 (2005) 283-312
    • (2005) SIAM J. Control Optim. , vol.44 , pp. 283-312
    • Andrieu, C.1    Moulines, É.2    Priouret, P.3
  • 2
    • 58549089515 scopus 로고    scopus 로고
    • Bouckaert, R.R., 1995. Bayesian belief networks: From construction to inference. Ph.D. Thesis, University of Utrecht
    • Bouckaert, R.R., 1995. Bayesian belief networks: From construction to inference. Ph.D. Thesis, University of Utrecht
  • 4
    • 0001019707 scopus 로고    scopus 로고
    • Learning Bayesian networks is NP-complete
    • Fisher D., and Lenz H.-J. (Eds), Springer-Verlag, New York
    • Chickering D.M. Learning Bayesian networks is NP-complete. In: Fisher D., and Lenz H.-J. (Eds). Learning from Data: Artificial Intelligence and Statistics V (1996), Springer-Verlag, New York 121-130
    • (1996) Learning from Data: Artificial Intelligence and Statistics V , pp. 121-130
    • Chickering, D.M.1
  • 5
    • 0031354418 scopus 로고    scopus 로고
    • CLIP3: Cover learning using integer programming
    • Cios K.J., Wedding D.K., and Liu N. CLIP3: Cover learning using integer programming. Kybernetes 26 (1997) 513-536
    • (1997) Kybernetes , vol.26 , pp. 513-536
    • Cios, K.J.1    Wedding, D.K.2    Liu, N.3
  • 6
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper G.F., and Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9 (1992) 309-347
    • (1992) Mach. Learn. , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 8
    • 0034174383 scopus 로고    scopus 로고
    • A new approach for learning belief networks using independence criteria
    • de Campos L.M., and Huete J.F. A new approach for learning belief networks using independence criteria. Int. J. Approx. Reason 24 (2000) 11-37
    • (2000) Int. J. Approx. Reason , vol.24 , pp. 11-37
    • de Campos, L.M.1    Huete, J.F.2
  • 9
    • 49549100459 scopus 로고    scopus 로고
    • Learning causal Bayesian network structures from experimental data
    • Ellis B., and Wong W.H. Learning causal Bayesian network structures from experimental data. J. Amer. Statist. Assoc. 103 (2008) 778-789
    • (2008) J. Amer. Statist. Assoc. , vol.103 , pp. 778-789
    • Ellis, B.1    Wong, W.H.2
  • 10
    • 58549088509 scopus 로고    scopus 로고
    • Fayyad, U., Irani, K., 1993. Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of International Joint Conference on Artificial Intelligence. Chambery, France, pp. 1022-1027
    • Fayyad, U., Irani, K., 1993. Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of International Joint Conference on Artificial Intelligence. Chambery, France, pp. 1022-1027
  • 12
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks
    • Friedman N., and Koller D. Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks. Mach. Learn. 50 (2003) 95-125
    • (2003) Mach. Learn. , vol.50 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 13
    • 0001667705 scopus 로고
    • Bayesian inference in econometric models using Monte Carlo integration
    • Geweke J. Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57 (1989) 1317-1339
    • (1989) Econometrica , vol.57 , pp. 1317-1339
    • Geweke, J.1
  • 14
    • 0001099335 scopus 로고    scopus 로고
    • Decomposable graphical Gaussian model determination
    • Giudici P., and Green P. Decomposable graphical Gaussian model determination. Biometrika 86 (1999) 785-801
    • (1999) Biometrika , vol.86 , pp. 785-801
    • Giudici, P.1    Green, P.2
  • 15
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman D., Geiger D., and Chickering D.M. Learning Bayesian networks: The combination of knowledge and statistical data. Mach. Learn. 20 (1995) 197-243
    • (1995) Mach. Learn. , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 16
    • 58549108221 scopus 로고    scopus 로고
    • Herskovits, E., Cooper, G.F., 1990. Kutato ́: An entropy-driven system for the construction of probabilistic expert systems from datasets. In: Bonissone P. (Ed.), Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence, Cambridge, pp. 54-62
    • Herskovits, E., Cooper, G.F., 1990. Kutato ́: An entropy-driven system for the construction of probabilistic expert systems from datasets. In: Bonissone P. (Ed.), Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence, Cambridge, pp. 54-62
  • 19
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks: An approach based on the MDL principle
    • Lam W., and Bacchus F. Learning Bayesian belief networks: An approach based on the MDL principle. Comput. Intell. 10 (1994) 269-293
    • (1994) Comput. Intell. , vol.10 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 20
    • 0036744537 scopus 로고    scopus 로고
    • Dynamically weighted importance sampling in Monte Carlo computation
    • Liang F. Dynamically weighted importance sampling in Monte Carlo computation. J. Amer. Statist. Assoc. 97 (2002) 807-821
    • (2002) J. Amer. Statist. Assoc. , vol.97 , pp. 807-821
    • Liang, F.1
  • 21
    • 59349103112 scopus 로고    scopus 로고
    • Liang, F., 2008. On the use of stochastic approximation Monte Carlo for Monte Carlo Integration. Statist. Probab. Lett., in press (doi:10.1016/j.spl.2008.10.007)
    • Liang, F., 2008. On the use of stochastic approximation Monte Carlo for Monte Carlo Integration. Statist. Probab. Lett., in press (doi:10.1016/j.spl.2008.10.007)
  • 22
    • 33947215681 scopus 로고    scopus 로고
    • Stochastic approximation in Monte Carlo computation
    • Liang F., Liu C., and Carroll R.J. Stochastic approximation in Monte Carlo computation. J. Amer. Statist. Assoc. 102 (2007) 305-320
    • (2007) J. Amer. Statist. Assoc. , vol.102 , pp. 305-320
    • Liang, F.1    Liu, C.2    Carroll, R.J.3
  • 23
    • 1542783745 scopus 로고    scopus 로고
    • A theory for dynamic weighting in Monte Carlo
    • Liu J.S., Liang F., and Wong W.H. A theory for dynamic weighting in Monte Carlo. J. Amer. Statist. Assoc. 96 (2001) 561-573
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 561-573
    • Liu, J.S.1    Liang, F.2    Wong, W.H.3
  • 24
    • 84950945692 scopus 로고
    • Model selection and accounting for model uncertainty in graphical models using Occam's window
    • Madigan D., and Raftery E. Model selection and accounting for model uncertainty in graphical models using Occam's window. J. Amer. Statist. Assoc. 89 (1994) 1535-1546
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 1535-1546
    • Madigan, D.1    Raftery, E.2
  • 25
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • Madigan D., and York J. Bayesian graphical models for discrete data. Internat. Statist. Rev. 63 (1995) 215-232
    • (1995) Internat. Statist. Rev. , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 26
    • 0002039637 scopus 로고
    • Cancer diagnosis via linear programming
    • Mangasarian O.L., and Wolberg W.H. Cancer diagnosis via linear programming. SIAM News 23 (1990) 1-18
    • (1990) SIAM News , vol.23 , pp. 1-18
    • Mangasarian, O.L.1    Wolberg, W.H.2
  • 29
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • Robbins H., and Monro S. A stochastic approximation method. Ann. Math. Statist. 22 (1951) 400-407
    • (1951) Ann. Math. Statist. , vol.22 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 30
    • 33746388444 scopus 로고    scopus 로고
    • Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms
    • Roberts G.O., and Tweedie R.L. Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms. Biometrika 83 (1996) 95-110
    • (1996) Biometrika , vol.83 , pp. 95-110
    • Roberts, G.O.1    Tweedie, R.L.2
  • 32
    • 0344128502 scopus 로고    scopus 로고
    • Learning linear causal models by MML sampling
    • Gammerman A. (Ed), Springer-Verlag, Heidelberg
    • Wallace C.S., and Korb K.B. Learning linear causal models by MML sampling. In: Gammerman A. (Ed). Causal Models and Intelligent Data Management (1999), Springer-Verlag, Heidelberg
    • (1999) Causal Models and Intelligent Data Management
    • Wallace, C.S.1    Korb, K.B.2
  • 33
    • 33749385876 scopus 로고    scopus 로고
    • Learning Bayesian networks structure with continuous variables
    • Li X., Zaiane O.R., and Li Z. (Eds), Springer-Verlag, Heidelberg
    • Wang S., Li X., and Tang H. Learning Bayesian networks structure with continuous variables. In: Li X., Zaiane O.R., and Li Z. (Eds). Lecture Notes in Computer Science vol. 4093 (2006), Springer-Verlag, Heidelberg 448-456
    • (2006) Lecture Notes in Computer Science , vol.4093 , pp. 448-456
    • Wang, S.1    Li, X.2    Tang, H.3
  • 34
    • 0000243504 scopus 로고
    • Graphical and recursive models for contingency tables
    • Wermuth N., and Lauritzen S. Graphical and recursive models for contingency tables. Biometrika 72 (1983) 537-552
    • (1983) Biometrika , vol.72 , pp. 537-552
    • Wermuth, N.1    Lauritzen, S.2
  • 35
    • 0031447220 scopus 로고    scopus 로고
    • Dynamic weighting in Monte Carlo and optimization
    • Wong W.H., and Liang F. Dynamic weighting in Monte Carlo and optimization. Proc. Natl. Acad. Sci. USA 94 (1997) 14220-14224
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 14220-14224
    • Wong, W.H.1    Liang, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.